BSTA 622 Statistical Inference II Fall 2021

Content:

This course focuses on theoretical statistics. We will cover a medley of classical statistical inferential methods, including the method of estimating equations, the asymptotic theory for maximum likelihood estimation, the generalized method of moment estimation, and inference by influence functions. This course will emphasize concepts, methods and theories, rather than applications. Successful completion of this course will provide you with a foundation in probability-based statistical inference.

Intended Audience:

The course is designed for Biostatistics Ph.D. students in their 2nd year or beyond. Students are required to complete Probability I (BSTA 620) and Inference I (BSTA 621) before taking this course. Exceptions may be made with permission of the instructor.

Instructor:

Jing Huang, PhD Jing14@pennmedicine.upenn.edu Office Hours: Wednesdays 3:30-4:30pm by appointment.

TA:

Haotian Zheng haotian.zheng@pennmedicine.upenn.edu Office Hours: TBD

Class Schedule:

Mon and Wed 1:45-3:15pm in Blockley Hall 235.

Textbooks:

Recommended, not required, textbooks: Theory of Point Estimation, by E.L. Lehmann and G. Casella, Springer Elements of Large-Sample Theory, by E.L. Lehmann, Springer Asymptotic Statistics, by A.W. van der Vaart, Cambridge Theoretical Statistics, by D. Cox and D. Hinkley, Chapman and Hall

Grading:

Homework: 40%. We will have 3-6 homework assignments. You are encouraged to discuss your homework among classmates, but each should write up his/her own assignments. Midterm: 30% Final exam: 30% Both midterm and final exams will be closed book.

Date		Topics
Sep	1	Mathematics Primer
	6	Mathematics Primer
	8	Unbiased estimation and Unbiased estimating functions
	13	Unbiased estimation and Unbiased estimating functions
	15	Unbiased estimation and Unbiased estimating functions
	20	Statistical Information
	22	Statistical Information
	27	Statistical Information
	29	Large Sample Theory
Oct	4	Large Sample Theory
	6	Asymptotic Theory of Estimation
	11	Asymptotic Theory of Estimation
	13	Asymptotic Properties of the MLE
	18	Asymptotic Properties of the MLE
	20	Midterm review
	25	Midterm
	27	Asymptotic Properties of the MLE
Nov	1	Asymptotic Properties of the MLE
	3	Generalized Linear models
	8	Generalized Linear models
	10	Examples
	15	Generalized Method of Moments
	17	Generalized Method of Moments
	22	Influence Functions
	24	Influence Functions (no class, self-study at home)
	29	Likelihood Functions (conditional, profile, plug in)
Dec	1	Likelihood Functions (conditional, profile, plug in)
	6	Likelihood Functions (composite, partial)
	8	Final Review (Last lecture)
	13	Reading day
	15	Final Exam

Tentative Schedule