kas

BMB 508- Principles of Macromolecular Biophysics. 2022 Schedule

Director: Kim Sharp, <u>sharpk@upenn.edu</u> Co-director: Sergei Vinogradov, <u>vinograd.upenn@gmail.com</u> Time: Tues, Wed, **1.45-3.15pm**, 255 Anatomy-Chemistry Building (note new new UPenn calendar compliant times)

This is an introductory course on Macromolecular Biophysics. The first part of the course covers the physical fundamentals underlying the structure and behavior of macromolecules necessary for biological function. The second part of the course covers the principle biophysical methods used to study macromolecules. The third part of the course examines, through a case study approach, how novel, yet still **rigorous and reproducible** research is conducted. For each case 2 students will present a small set of papers (usually 2 to 3) representing different sides of a scientifically controversial, possibly unsolved, topic in macromolecular biophysics. Students can choose from a set of pre-selected topics, or from their own suggestions (with approval from the director). The presentations will emphasize the dynamic, often uncertain dialogue of experiment, interpretation and critique involved in rigorous and reproducible scientific discovery. The presentation will be 'contemporaneously historical', i.e. based on the state of knowledge at the time of the papers. It can use knowledge of earlier literature, but not of research that was unknown at the time. Most typically draw from papers and letters in general journals like Science or Nature. They thus are written to be understood by people outside the specific area of the articles, and without extensive background literature reading, (like BMB508 students!)

There is no textbook that covers all of the class, as much of the material is based on current research and is too new for textbooks. However Van Holde, K. E. et al. *Principles of Physical Biochemistry*, 2nd Edition, covers much of the material. A copy will be placed on reserved at the Biomeidcal Library. A copy is also available from KAS.

Lecture notes and other class material, include topics/papers for the case studies will be posted as the course progresses

Grade: Homework Assignments: 40%, Exam 30%, Presentations/Participation 30%.

Date	Торіс	Lecturer
	Part 1: The Physics of Macromolecules	
T sep 6	Molecular Interactions: Bonding, Nonpolar, Polar, Electrostatics	Sharp
W sep 7	Equilibria: Folding, Structure and Stability	Sharp
T sep 13	Equilibria: Binding and Allostery	Sharp
W sep 14	Kinetics: Theory	Sharp
T sep 20	Kinetics: Experimental	Kohli
W sep 21	Kinetics: Enzymes, Inhibitors and more	Kohli
	Part 2: Biophysical methods for studying macromolecules	
T sep 27	No Class: Rosh Hashanah	
W sep 28	Optical Spectroscopy (UV, Fluorescence, CD)	Vinogradov
T oct 4	No Class: Yom Kippur	
W oct 5	No Class: Yom Kippur	
T oct 11	Optical Spectroscopy (UV, Fluorescence, CD)	Vinogradov
W oct 12	Single Molecule techniques	Goldman
T oct 18	Single Molecule techniques	Goldman
W oct 19	Hydrogen Exchange	Black
T oct 25	Scattering: Determination of structure	Gupta
W oct 26	Diffraction 1: Determination of Structure	van Duyne
T nov 1	Diffraction 2: Determination of Structure	van Duyne
W nov 2	Cryo Electron Microscopy: Principles of EM imaging	Murakami
T Nov 8	Cryo Electron Microscopy: Single Particle	Murakami
W Nov 9	Cryo Electron Microscopy Tomography	Chang
T nov 15	NMR	Sgourakis
W nov 16	NMR	Sgourakis
	Part 3: Rigor and Reproducibility in Biophysical Research:	
	Examination of Current Scientific Controversies	
	See list in separate document handed out at first class	
T nov 22		Pair 1, 2
W nov 23	Thanksgiving- no class	
T nov 29		Pair 3, 4
W nov 30		Pair 5, 6
T dec 6		Pair 7, 8
W dec 7	Final Exam (Take home)	Pair 9, 10 (If necessary)
W dec 14	Final Exam Due	