University of Pennsylvania Division of Biostatistics Subject Guide

BSTA 670: Programming and Computation for Biomedical Data Science

Credit points: Semester: Time: Location:	1.0 Spring 2023 M/W 8:30-9:50am EST 701 Blockley Hall
Course Instructor:	Kristin A. Linn Assistant Professor of Biostatistics <u>Email: klinn@pennmedicine.upenn.edu</u> <u>Office:</u> 220 Blockley Hall Office hours: regular time TBD; or by appointment Location: 220 Blockley
ΤΑ	TBD Email: TBD Office hours: TBD Location: TBD
Pre-requisites:	BSTA 620, 621, and 651; or permission of instructor.
Subject Aims:	The course will cover programming and computational fundamentals in Python and R. It will concentrate on computational tools that are useful for statistical research and computationally intensive analyses. The goal is for students to develop a knowledge base and skill set that includes a wide range of modern computational tools needed for statistical research and data science. Topics may include, but are not limited to: 1. Reproducible research and programming 2. Algorithms
	 Simulation Computer storage and arithmetic Optimization Numerical Integration
Course Materials:	 Computer storage and arithmetic Optimization

Textbook:	None required.
Breaks:	There will be no class on: March 6 and 8 (Spring Break) ENAR week schedule TBD March 29 (DBEI research day)
Assessment:	All assignment materials will be submitted on Canvas. Grades will be based on the following components:
	Homework: 60% (4 @15% each) Data analysis midterm and in-class presentation: 15% Final project: 25%
Late Policy:	Late assignments will receive a maximum of half credit. An assignment submitted 1 minute after the deadline will be considered late. Assignments more than 3 days late will not be graded and will receive no credit. If you have a pre-existing commitment or special circumstance (e.g., conference travel, family emergency) please let me know as far in advance as possible so that we can make alternative arrangements for submitting your work.
Midterm:	The midterm grade will comprise an analysis of a public data set in a Python notebook, an in-class presentation of the work, and blinded peer reviews of other students' presentations. More details about the midterm project will be provided in February.
	<u>Code/notebook due:</u> Feb 26, 2023, by 5:00pm EST <u>Student presentations:</u> Feb 27 and March 1, 2023, 8:30-9:50am EST <u>Peer reviews due:</u> March 15, 2023, by 5:00pm EST
Final Project:	Students will replicate and extend the results of a recently published Monte Carlo stimulation experiment. The final project will include an R package containing simulation code and a report written in .Rmd that fully reproduces the simulation experiment. Additional details about the final project requirements will be given later in the semester.
	All project materials due: May 5, 2023, by 11:59pm EST
Useful resources:	Git documentation and book by Chacon and Straub: <u>https://git-</u> <u>scm.com/book/en/v2</u>
	Python documentation: https://docs.python.org/3/

Python documentation: https://docs.python.org/3/

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). *Introduction to algorithms*. MIT press.

Wickham, H (2015). Advanced R. CRC Press.

Matloff, N (2011). *The Art of R Programming*. No Starch Press.

Monahan, J (2011). *Numerical Methods of Statistics* (second edition). Cambridge University Press.

Givens, G.H., & Hoeting, J.A. (2013) *Computational Statistics*. Second edition. Wiley.

Cheney, W, & Kincaid D. (2008) *Numerical Mathematics and Computing*. Sixth edition. Thomson.