Evolution of PET technology – from early days, to the PennPET Explorer

Joel Karp, David Mankoff Department of Radiology

P30 Didactics Lecture, April 6, 2020

Physics & Instrumentation Group

Department of Radiology, University of Pennsylvania

PET with multi-rings geometry (and septa)

mid 1970's

Washington University UCLA

mid 1908's Casey, Nutt Block detector

Higher spatial resolution with Anger-logic and multi-crystal BGO block

PET with Anger Cameras

University of Chicago 1975

2 Anger cameras in coincidence:

- Thick crystals
- No collimation
- Rotating

G Muehllehner, M Buchin, J Dudek: Performance Parameters

University of Pennsylvania 1998

- 6 Curve-Plate detectors
- No Collimation 3D
- Stationary

UGM Medical Systems ADAC Laboratories C-PET

Iterative reconstruction – improved image quality AC with ¹³⁷Cs singles Transmission scan – more accurate quantitation Count-rate capability limited with NaI(TI) – sufficient for FDG Improved with pixelated detector with GSO – Allegro scanner

Higher sensitivity with 3D imaging acquisition and reconstruction

Allegro

Brain PET with Anger-logic Detectors

2001 G-PET Brain Scanner Pixelated GSO detector

Spatial resolution ~ 3.7 mm 25.6 cm axial FOV

Siemens HRRT PET scanner

Spatial resolution ~ 2.7 mm

Dual-layer block detectors with smaller crystals and quadrant sharing arrangement of PMTs

Higher spatial resolution and sensitivity with dedicated brain PET

Also, improved quantification primarily due to a reduction in partial-volume effects (Van Helden *et al* (VUMC), JNM 2009).

TOF Positron Emission Tomography scanners

Washington University CEA-LETI, Grenoble, France University of Texas 1979-1983

Ter-Pogossian et al, TMI 1982

1-to-1 coupling (25 mm ϕ x 45 mm : 28 mm ϕ PMT)

4 rings x 96 detectors CsF

 $\Delta t = 500 \text{ ps}$

Imaging with short-lived isotopes – ^{11}C , ^{15}O , ^{13}N

¹¹C-palmitate TOF non-TOF

Retrospective gating from list data

Higher count-rate imaging and TOF-assisted reconstruction with fast timing detectors

Modern PET-CT with 3D TOF

LSO/LYSO - high light output enabled extension of block design and pixelated Anger-logic detector

- stopping power enabled high sensitivity, along with 3D imaging
- fast rise/decay of scintillation enabled precise timing for TOF

Philips Gemini TF

Anger-logic pixelated detector – high spatial resolution and TOF

Improved lesion detectability and quantitative accuracy for clinical FDG imaging with TOF

Commercial TOF PET/CT – all vendors

Benefits of TOF lead to shorter scans (light patient) or improved image quality (heavy patients)

Images courtesy of Univ. Pennsylvania PET Center

Improving Timing resolution

Benefits of TOF increase with better timing resolution

- Improved Signal-to-Noise
- Improved Quantitative Accuracy

Reduce statistical uncertainty or jitter in determining time stamp

- New scintillators
 - Lanthanum Bromide
 - Ceramics (e.g., GluGAG)
 - LSO with optimized (e.g., Ca or Mg) dopants
- Improved detector designs
 - Dual-sided read-out
 - Thin layers of stacked detectors
 - Monolithic detectors with depth-of-interaction
- New photo-sensor technology
 - Multi-channel PMTs
 - Silicon photo-multiplier

Gain in SNR = $(D/\Delta x)^{1/2}$

New Photo-sensor: Si-PMs

- Small APDs operating in Geiger mode with hundreds of micro cells per mm²:
 - Small, compact design
 - Can operate in MR
 - High gain, no need for amplification
 - Very high QE
 - Photo Detection Efficiency (PDE) = QE x Fill ~ 25-50%
 - Fast timing characteristics
 - Potential for low encoding (e.g. 1-to-1)
 - Multiple vendors
 - Hamamatsu, SensL, FBK/Broadcom, PDPC
- Analog devices requires ASIC for signal processing

Digital devices have electronics embedded on chip

Analog Silicon Photomultiplier Detector

Philips Vereos

2012 pre-production, 2017 production

MIP images for BMI=24 patient

- 3.86 x 3.86 x 19 mm³ thick LYSO
- Axial FOV: 16.4 cm
- TOF: 320ps

Digital SiPM chip is a 8x8 channel device 1 crystal per SiPM channel •

90s/bed

15min

Courtesy, Drs. Michael Knopp, Jun Zhang, Ohio State Univ.

High quality images in short scan time

13.4 mCi, 60 min p.i.

30s/bed

5min

Philips Vereos

Characterization of the Vereos Digital Photon Counting PET System

n

Miller et al, SNM 2015

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER Wright Center of Innovation in Biomedical Imaging

Spatial Res = 4.1 mm at center 5.1 mm at 20 cm

Siemens Biograph Vision

2018

- 3.2 x 3.2 x 20 mm³ thick LSO .
- Axial FOV: 26.3 cm
- TOF: 215 ps

Mini-block, 5x5 array of crystals coupled to

a SiPM chip with 4x4 array of channels

• ~ 1.5 crystals per SiPM channel

41 yo F with breast cancer BMI 43.6

15 mCi FDG, 54 min p.i. 11 min scan CBM @ 1.4 mm/s

27 yo F with drug resistant epilepsy

15 mCi FDG, 46 min p.i. 10 min scan

Images courtesy PET Center,

Decreased uptake consistent with left-sided seizure onset

University of Pennsylvania

What is TB (Total-Body) PET?

Research and Translational Applications

- High sensitivity
 - Reduce dose or scan time
 - Delayed imaging to capture slow biology
- Simultaneous imaging of large volume
 - Bio-distribution of new radio-tracers
 - Dynamic imaging of multi-organ systems
 - brain-body
- Improved quantitative accuracy of kinetic modeling for biologic parameter calculation

Image courtesy S. Cherry, UC Davis

Long AFOV scanners: Anger logic vs. 1-to-1 coupling with SiPMs

194 cm AFOV

PennPET Explorer

70-140 cm AFOV

PDPC digital SiPM

3.86 x 3.86 x 19 mm³ LYSO

•

٠

TOF = 250 ps, 4-mm spatial resolution

2D flood

Scalable: 3 rings to 6 rings

Summary

- Complete expansion to 6 rings
- Acceptance testing
 - Gemini TF CT completed
 - PET will follow NEMA 2018
 - Designed for scanners with standard AFOV
 - Spatial resolution, sensitivity, count-rate capability, image quality
- Quantitative calibrations
 - ACR phantom SUV cylinders, background
 - Routine QC daily, monthly/quarterly, annual
- Resume human imaging research IRB
 - Emphasize applications for whole-body PET

PennPET Explorer: Clinical studies

M 60 y.o, 173 cm, BMI 20.1 15 mCi FDG

15 min scan

10 min scan

10 min scan

PennPET Explorer: Dynamic studies

F 29 y.o, 177 cm, BMI 19.3 15 mCi FDG

PennPET Explorer: Delayed studies

• Activity in the brain decreases over time more quickly than in myocardium implying that G6Pase is activated to break down [¹⁸F]FDG-6P

High Sensitivity enables the study of slow biological processes

Energy Metabolism & Biogenesis

[¹⁸F]FDG and [¹⁸F]F-GLN PET/CT in Breast Cancer [¹⁸F]FDG [¹⁸F]F-GLN

(Austin Pantel)

Total Body PET Enables Simultaneous Imaging of Glutamine and Glucose Metabolism Mankoff, Karp, Kontos, O'Sullivan, Cancer Moonshot Grant R33-CA225310

Dynamic data analysis with 4D reconstruction tools Ma

Matej & Gravel

Contributors: Paul Gravel, Margaret Daube-Witherspoon, Joel Karp, Yusheng Li, David Mankoff, Varsha Viswanath, and Samuel Matej. Funding: National Institutes of Health under Grants R33-CA225310 and R01-EB023274.

4D Imaging biomarkers of functional tumor heterogeneity (FTH)

signature

1. **3D tumor segmentation**

2. Summarize TACs using functional principal components

5. **Recurrence free survival** analysis

Survival curves for patients by split baseline + FTH signature risk predic

Chitalia and Kontos

Chitalia et al., Radiomic Functional Intra-Tumor (Rad-FIT) clustering for characterizing functional tumor heterogeneity: Evaluation as a prognostic dynamic FDG-Pet biomarker for breast cancer, in progress

