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• Sources of variance

Independent component analysis, a brief primer  

• Where variance comes from:

• True noise or measurement error/imprecision (random variance)

• Underlying, non-random factors that influence the measurement

Days of

abstinence

Substance 

users

• Readiness for change

• Treatment compliance

• Social support

• Substance use history

• Cognitive facilities



• Components of variance

Independent component analysis, a brief primer  

• How much variance is explained by each source:

• It may not be the same amount for every measurement

Subj 10

• Readiness for change

• Treatment compliance

• Social support

• Substance use history

• Cognitive facilities

Sources of variance:

Subj 09

• The amount of variance attributed to each source
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• Loadings, source loadings and component loadings 

Independent component analysis, a brief primer  

• Source loading: how much of a component variance comes from each source 

• Component loading: how much variance that source contributes to each measurement
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• Loadings are just betas/coefficients of the variance mixture linear equation



• Loadings, source loadings and component loadings 

Independent component analysis, a brief primer  

• Source loading: how much of a component variance comes from each source 

• Component loading: how much variance that source contributes to each measurement

• Loadings are just betas/coefficients of the variance mixture linear equation

×

Source loadings

=

Subject’s component 

variance



• Network: source network and functional networks

Independent component analysis, a brief primer  

• Source network: set of regions that source a single component of variance (PET)

• Functional networks: set of regions that source a coherent component time course (fMRI)



• The pursuit of Independence

Independent component analysis, a brief primer  

• Blind separation of non-random variance structures

• Find maximally non-Gaussian variance

• Minimize mutual information across components and sources

• Different ICA algorithms pursue independence differently

• Limitations and restrictions

• ICA does not work on truly random data (allowance for a random sources depends on algorithm)

• User decides the number of sources/components to solve for

• Restricted to linear mixtures of component variance

• ‘True’ sources cannot be known



• To review:

• We have some variance we would like to explain. Its not random variance, we think it has 

some structure and represents the sum-mixture of underlying variance sources

• ICA can separate out the components of variance and identify their sources by 

pursuing maximal independence. 

• ICA will output two sets of loadings: how much of the component variance was 

found in each source (source loading), and how much each component explains the 

total variance of each measurement (component loading).

Independent component analysis, a brief primer  

• The sum of all source*component loadings will reconstruct an estimate of the original data



ICA of PET

• ICA of PET

• Is PET regional variance totally random or 

might there be some underlying sources?

• ICA to analyze the patterns of regional covariances 

across subjects to look for independent sources of 

component variance

• [11C]-(+)-PHNO, dopamine D2/D3 receptors
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• D2 and D3 receptors

• Highly expressed in subcortical and midbrain structures central to addictive processes

• Distinct and overlapping D2/D3 distribution and circuitry

• Suggests unique and shared functional roles

• Broadly implicated in impulsive and compulsive processes

Berridge, 2003; Robinson et al, 2015
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• Reward sensitivity

• Reinforcement

• Habituation

• Stimulus reactivityImpulsive

D3

D2
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ICA of dopamine D2/D3 PET



• Lower striatal D2 availability in CUD
Volkow et al, 1990; Martinez et al, 2004

• Higher D3 availability in CUD
Payer et al, 2014 Matuskey et al, 2014

Data from: Martinez et al, 2004 *P<0.05, **P<0.01

• [11C]-raclopride studies

Data from: Worhunsky et al, 2017 *P<0.05, **P<0.01

• [11C]-(+)-PHNO studies

• Equal D2/D3 affinity

• No CUD differences in midbrain

• 30:1 in vivo D3:D2 affinity

• No CUD differences in striatum

ICA of dopamine D2/D3 PET

• D2 and D3 receptors in CUD



• Regional [11C]-(+)-PHNO binding reflects local D2/D3 receptor concentration
Searle et al, 2013; Tziortzi et al, 2011

D2R-rich mixed D2R/D3R                     D3R-rich

ICA of dopamine D2/D3 PET



CUD relative to HC participants displayed lower BPND in the dorsal putamen 

(DPU; *P=0.037) and greater BPND in the substantia nigra (SN, **P=0.005). 

Error bars indicate SD.

• N=52 (26 CUD, 26 HC)

• Replicated previous ROI methods (SRTM2, cerebellum)

• Can ICA separate D2 and D3 binding in mixed-signal regions? 

ICA of dopamine D2/D3 PET



• Explicit masking to eliminate voxels of no-interest 

(BPND<0.25; not expected to have structure)

• MDL criteria estimated 3 independent components optimally fit the data set     

Li et al, 2007 

• Components were extracted with InfoMax using the SBM module of the GIFT
Bell and Sejnowski, 1995; Calhoun et al, 2001; Xu et al, 2009

• Parametric images (SRTM2) were registered to MNI152 space using SPM12 and smoothed 

with 4mm FWHM Gaussian kernel

• Image processing

• ICA analysis

ICA of dopamine D2/D3 PET



• Unmixing matrix give us source and component loadings

Parametric PET image

ICA
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ICA of parametric imaging data

• ICA input
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• Generate estimates of regional D2- and D3-related binding based on reported fractions from 

displacement studies 
Searle et al, 2013; Tziortzi et al, 2011

• Group source maps were scaled to estimated ෪𝐵𝑃𝑁𝐷 units:

Source loading map * average component loading = ෪𝐵𝑃𝑁𝐷 contribution

• ICA post-processing

• Comparison to ROI-based D2/D3 BPND

• ෪𝐵𝑃𝑁𝐷 calculated for ROIs

=×

ICA of parametric imaging data



• Striatopallidal source network

*P=0.008

• Regional ෪𝐵𝑃𝑁𝐷 correlated with 

D2-related binding
• Source spatial map

ICA of dopamine D2/D3 PET



Error bars indicate SD. *P=0.013
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• Striatopallidal source network

• Lower component loadings in CUD • Source spatial map

ICA of dopamine D2/D3 PET



• Pallidonigral source network

• Source spatial map

ICA of dopamine D2/D3 PET

*P=0.007

• Regional ෪𝐵𝑃𝑁𝐷 correlated with 

D3-related binding



ICA of dopamine D2/D3 PET

• Pallidonigral source network

• Source spatial map • Higher component loadings in CUD 

Error bars indicate SD.  *P=0.047
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• Encompassed D3R-rich regions, but not 

correlated with ROI-based D3R BPND

• No group difference (P=0.11)

• Relatively weak source of BPND across ROIs

• Mesoaccumens source network

• Source spatial map

ICA of dopamine D2/D3 PET



ICA of dopamine D2/D3 PET

*p=0.048 *p=0.042

• Component loadings associated with years of cocaine use 

• Striatopallidal (D2) • Pallidonigral (D3)

• No associations with years of use with standard ROI-based BPND value



Standard BPND and ICA-estimated D2- and D3-related BPND in the ventral striatum and pallidum. 

Numbers above pairs are p-values of two-sample t-tests. Error bars are SE.

ICA of dopamine D2/D3 PET

• D2/D3 in mixed-binding regions

• Group differences in the ventral striatum did not achieve significance

• Differences of both lower D2- and higher D3-related binding in the pallidum in CUD 



ICA of dopamine D2/D3 PET

• Summary

• [11C]-(+)-PHNO has unique binding profile to assess both D2 and D3 receptors

• ICA estimates suggest bi-directional CUD-related alterations in D2 and D3 are present 

mixed-binding regions (i.e., GP)

• ICA blindly separated D2- and D3-related sources of BPND

• ICA estimates were more sensitive to CUD chronicity than standard binding values



ICA of PET

• ICA of PET using not-mixed-binding-profile radiotracers 

• ICA of [11C]-P943 (serotonin 1B)

• Lower 5-HT-1B sources in CUD relative to HC and GD
Worhunsky et al, work in process

S1 S5

• ICA of [11C]-UCB-J (SV2A; synaptic density)

• SV2A sources related to RSN activity in HC

Fang et al, work in process



• ICA of fMRI – functional brain networks

• Distinct functions may be distributed across a distinct set regions

• function A involves the ACC and the OFC

• If we see lower ACC activity in addiction, 

understanding which other regions that activity is 

connected to can provide insight into which function is 

impaired

• function B involves the ACC and the VS

ACC

VS OFCB

A

ICA of fMRI



•Connectivity as temporal correlation in fMRI

ACC

Activity in ACC while performing function A

• e.g., seed-based connectivity

A

During A, ACC and OFC are connected

ACC

OFC

R2
(X,Y)=0.35, P=0.009

A

During A, ACC and VS are not connected

ACC

VS

R2
(X,Z)=0.08, P=0.27

ICA of fMRI



•fMRI BOLD signal as a summation of local neural activity

=+

• “Do A and B simultaneously” 

• BOLD in the ACC is the summation of A and B related signals

X(A) X(B) ACC

B

A

2mm

ACC

ICA of fMRI



• Challenging to isolate single discrete functions in fMRI task-design

2mm

ACC

B

A

D

C

E

+X(A) X(B) = ACC+ X(C) + X(D) + X(E)

+Y(A) Y(F) = OFC+ Y(G) + Y(H) + Y(J)

ICA of fMRI

• fMRI BOLD as a mixture of ‘functional components’



functional components

• What is New Haven traffic related to?

R2 = 0.8, P<0.001

Yes! New Haven traffic is 

connected to Hartford

•Traffic in other Connecticut cities (connectivity)?
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New Haven traffic may be 

connected to Greenwich

R2 = 0.3, P=0.05
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Ledyard

R2 = 0.02, P=0.40

New Haven traffic is not 

connected to Ledyard



functional components

• What are the sources and components of traffic in Connecticut?

Component 1

12a                12p               12a

Source of 1 Component 2

12a                12p               12a

Source of 2

Component 3

12a                12p               12a

Source 3 Component 4

12a                12p               12a

Source of 4



functional components

Component 1

12a                12p               12a

Source of 1 Component 2

12a                12p               12a

Source of 2

Component 3

12a                12p               12a

Source 3 Component 4

12a                12p               12a

Source of 4

School Local

commuters

Distance

commuters

Night/event

• Can test models (or make inferences) about types of traffic each source/component represents



functional networks

Hartford school traffic does not 

cause or influence New Haven 

school traffic, but both ‘signals’ are 

processing school-related traffic

•Functional network (network of function)

•No assumption of connectivity/effectivity (functional network ≠ connectivity network)

School

12a                12p               12a

•Networks of ‘types’ of cars (car-functions), not cars travelling place to place

•Functional network: ‘network of sources of a component function’ 

fMRI BOLD

0                60s               120s

• fMRI: A set of regions that source a temporal component of the BOLD mixture ’

•The source of a functional brain network is a brain function



•Meta-analysis of component brain networks and associated functional domains

ICA of 8,637 peak-activation maps Regression with study functional domains

Laird, et al 2011

functions of functional networks



• Back-reconstruct subject-level data

PCA

ICA
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Regression p<0.001:

Network is associated 
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• ICA input

ICA of fMRI



functional networks in young adult drinkers

•Response inhibition (Go/NoGo) and college drinking trajectories

•Right frontoparietal network reduced on 
average in binge-drinkers

•Reduced frontoparietal in committing errors 
predicted 1-year escalation in binge drinking

Adol. drinking initiators; Norman et al, 2011 Worhunsky, et al 2015

•Widespread reductions in inhibitory 
activity related to initiating drinking. 

•Lots of regions with lots of functional 
implications



functional networks in young adult drinkers

•Response inhibition (Go/NoGo) and college drinking trajectories

•No differences in default mode network: i.e., not related to being more/less on-task

Worhunsky, et al 2015

•No difference in temporo-occipito-parietal network: i.e., not related to stimulus discrimination 
processing

• ICA of fMRI allows an investigation of the component functions of complex (or simple) tasks 



functional networks in addiction

•Executive control alterations in substance use disorders

Goldstein, et al 2011



•3-stage addiction model

•Lower cortical control networks:

functional networks of executive control in cocaine use disorder

•Frontoparietal, medial frontal, salience 

•Higher subcortical network

•Blunted ‘top-down’ control in CUD looks like:

•Greater ‘bottom-up’ reactivity looks like:

Koob & Volkow, 2010

•Lower default-mode suppression

•Blunted global functioning 



blue

red

green

red

•Event-related Stroop fMRI task

- Color-word Stroop

- 1.3s stim, 350ms ISI

- Pseudo-random (9-13:1 C:I) 

- 6, 3-min runs

- ‘Silent’ performance in-scanner

• fMRI data spatially processed in SPM12

• ICA performed with Group ICA Toolbox (GIFT)

- Components extracted using InfoMax

- Spectral analysis to identify and exclude artifact/noise sources (LF:HF>4.0)

- Temporal regression to select incongruent-related networks

fMRI of executive control



•Stroop interference-related brain activity in treatment-seeking CUD (N=20) and HC (N=20)

•No regional differences in Stroop activity between CUD and HC

Stroop-related brain activity 

Brewer, et al 2008

•No difference in performance measures (reaction times, error rates)

•Standard GLM-based analyses



•Functional networks of Stroop performance

Stroop-related functional networks

Worhunsky, et al 2013

• No group difference in any executive-control-related network

• No group difference in striatal network engagement



•Differential relationship between functional networks and behavior

• In HC, greater engagement (B, C, D) associated with faster interference processing

• In CUD, greater engagement (C, D) associated with slower interference processing

• In CUD, greater activity is more reactive/interruptive, in HCs activity is resolution-based?

Worhunsky, et al 2013

Stroop-related functional networks



•Stroop control by treatment response

•GLM: Right dorsal striatum predicts 
abstinence during treatment

•Dorsal striatum integrated into several networks

• Counter to hypotheses of hyperactive 
subcortical functioning being disruptive to 
executive functions in CUD

•Treatment-responders showed greater
subcortical engagement than non-responders

Worhunsky, et al 2013

Brewer, et al 2008

•No striatal engagement in non-responders

•Responders (N=11; >80% abstinence) vs 
non-responders (N=9; <30% abstinence) 

•Which functional process is this related to?

Stroop-related functional networks



Functional networks in CUD

•Executive control in CUD

ALERT!

•Bottom-up ‘alert’ mechanism may be disrupted in CUD?

•Greater alert signals in CUD slowed conflict responding (perhaps avoiding errors)

•Healthy-levels of alert signaling associated with better treatment outcome



Functional network dynamics in CUD

•Dynamic Causal Modelling (DCM) of network interactions

• Input-state-output modeling of neural propagation

•How do components X, Y, Z effect each other (and does stimulus S influence effectivity)?

• Intrinsic (baseline) effectivity

•Extrinsic (context-modulated) effectivity

•How do network dynamics change in 
response to Stroop conflict?



Functional network dynamics in CUD

•Non-treatment seeking CUD (N=16) and HC (N=16)

•Extracted more ICA sources, separation of frontoparietal and bilateral IFG networks

•No group differences (Ns=16) in Stroop-related network engagement

Error bars are SE; all pairwise n.s. (LFP: P=0.10)



Functional network dynamics in CUD

•Network effective connectivity of Stroop control

•Subcortical activates lateral prefrontal, which 
activates right frontoparietal

•Right frontoparietal distributes inhibitory signals

Input/Intrinsic 

connectivity

positive

negative

positive

negative

Interference 

modulation

n.s.     n.s.

HC CUD



Input/Intrinsic 

connectivity

positive

negative

positive

negative

Interference 

modulation

n.s.     n.s.

HC CUD

•Subcortical activates both frontoparietals, 
lateral prefrontal goes left

•Re-organized inhibitory signals

Functional network dynamics in CUD

•Network effective connectivity of Stroop control

•Subcortical activates lateral prefrontal, which 
activates right frontoparietal

•Right frontoparietal distributes inhibitory signals



functional component dynamics in CUD

Input/Intrinsic 

connectivity

positive

negative

positive

negative

Interference 

modulation

n.s.     n.s.

HC CUD

•Functional source dynamics of Stroop control

Conflict 
resolution

Tonic 
Attention 
Control

Phasic 
Attention 
Control

Activate-
Response 
Process

Conflict 
resolution

Tonic 
Attention 
Control

Phasic 
Attention 
Control

Activate-
Response 
Process

•No differences in regional BOLD signals, no performance differences

•No differences in how much networks are engaged during performance

•But how the component functions coordinate to resolve conflict is markedly different



• Default mode network (DMN) suppression

• DMN is a core resting-state functional network
Buckner et al, 2008

• During task performance DMN is suppressed (more negative)

• Degree of suppression may be a marker of global executive 

functioning
Anticevic et al, 2012; Binder, 2012

• Stroop executive control networks reliably-tended to be lower CUD than HC. 

• Perhaps DMN suppression might capture this difference in global functioning

• Explore relationships with D2- and D3-related binding from [11C]-(+)-PHNO scans 

DMN suppression in CUD
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• CUD tended to exhibit generally less DMN suppression

p=0.09

• DMN suppression

• D2/D3 availability
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• CUD had greater D3-related binding in the SN (Ns=16)

p=0.04

• D2-related binding in the DPU tended to be lower in CUD

p=0.07

• Stroop performance

0%

50%

errors

In
c
o

n
g

ru
e
n

t,
 %

0

400

delay

In
te

rf
e
re

n
c
e
, 
m

s

HC CUD

• No group differences in incongruent error rates or 

interference delays

• Group difference in response to high-conflict stimuli
p=0.01

DMN, D2/D3, and Stoop outcomes 
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•Both consistent with the inverse of executive 

control network findings

•HC: Greater suppression associated with longer delays
p<0.01

•CUD: Greater suppression tended to be 

associated with shorter delays
p=0.10

•DMN suppression not related to error rates

DMN suppression and performance
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• D2-related binding

•HC: Greater D2 associated with less suppression
p=0.05

•CUD: No association with DMN
p=0.40

• D3-related binding

•HC: No association with DMN
p=0.60

•CUD: Greater D3 associated with stronger suppression
p<0.01

DMN suppression and D2/D3
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• D2-related binding

•HC: Greater D2 associated with shorter delays
p<0.01

•CUD: No association with interference delay
p=0.88

• D3-related binding

•HC: No association with interference delay
p=0.38

•CUD: Greater D3 associated with shorter delays
p=0.01

•Error rates not associated with D2

•Error rates not associated with D3

D2/D3 and performance



• DMN–to–behavior through D2

•DMN engagement had a significant indirect 

effect through D2 mechanisms on 

interference delays only in HC

• DMN–to–behavior through D3

•DMN engagement had a significant indirect 

effect through D3 mechanisms on 

interference delays only in CUD

•Differed from no indirect effect in CUD 

index=28.57, SE=16.53; 95%CI=6.75, 71.81

•Differed from no indirect effect in HC 
index=43.10, SE=16.84; 95%CI=11.05, 77.03 

DMN

engagement

Stroop

interference

D3

(SN BPND)

Group†

-0.15 (0.05)**

-0.38 (0.10)**

direct: -26.45 (12.00)* 

conditional indirect: 

HC: -2.40 (11.35) CUD: 40.70 

(15.61)†

-89.5 (35.8)*

-58.7 (72.4)

D3

(SN BPND)

* p<0.05; ** p<0.01. † 95%CI indicate a significant effect.

DMN

engagement

Stroop

interference

D2

(DPU BPND)

Group†

0.07 (0.04)○

-0.10 (0.07)

direct: 6.45 (12.61)  

conditional indirect: 

HC: -28.84 (16.20)† CUD: -0.27 

(5.23)

-129.5 (49.9)*

226.7 (100.6)*

D2

(DPU BPND)

○ p<0.10, * p<0.05; ** p<0.01. † 95%CI indicate a significant effect.

•D2-mechanisms facilitate faster conflict 

resolution with less DMN suppression in HC

•D3-mechanisms facilitate faster conflict 

resolution in CUD but with more DMN 

suppression.

Exploratory moderated-mediation



Un-mixing addiction in the brain

•Addiction is a complex and multifaceted disease

•Substantial variability in individual disease profiles, motivations, functional impairments, etc.

•An improved understanding of the many different sources of variability will inform interventions

•Re-thinking the ‘re-wired’ addicted brain

•How components of information are distributed across circuits may have changed 
(e.g., school buses are taking people to the casinos) 

•Understanding sources of addiction toward prevention and treatment

•Are there ‘at-risk’ source profiles (which sources are dominate in youth who develop a SUD)? 

•How do source dynamics change during early abstinence toward sustained recovery?

•How information flows from circuit to circuit may have changed 

(e.g., people are dropping kids off at school on their way home from work)

•Understanding sources of addictive function may more directly translate to clinical application



Un-mixing addiction in the brain with ICA

•Not all variance is created randomly

•Underlying sources of variance suggest imperfect or imprecise measurements

•The most variance explained is not always best

•Analyses fitting the dominate variance distributions (e.g., PCA) may still be mixing true sources

•Mixed-source profiles can be help explain most of the variance in a dataset, understanding 
how underlying sources mix leverages all the variance in a dataset

•Data-driven and blind does not mean hypothesis-free

•Many independent small effect sizes can contain a lot of information that adds up to big effects

• ICA is best applied with a rationale for the expectation of types of variance sources

•Sources require replication, validation and support for interpretation

•Total scores can be helpful, subscales provide greater precision of underlying sources 
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