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Abstract
Background and Aims: Cirrhosis is a major cause of death and is associ-
ated with extensive health care use. Patients with cirrhosis have complex 
treatment choices due to risks of morbidity and mortality. To optimally coun-
sel and treat patients with cirrhosis requires tools to predict their longer- term 
liver- related survival. We sought to develop and validate a risk score to pre-
dict longer- term survival of patients with cirrhosis.
Approach and Results: We conducted a retrospective cohort study of 
adults with cirrhosis with no major life- limiting comorbidities. Adults with cir-
rhosis within the Veterans Health Administration were used for model training 
and internal validation, and external validation used the OneFlorida Clinical 
Research Consortium. We used four model- building approaches including 
variables predictive of cirrhosis- related mortality, focused on discrimination at 
key time points (1, 3, 5, and 10 years). Among 30,263 patients with cirrhosis 
����\HDUV�ROG�ZLWKRXW�PDMRU�OLIH��OLPLWLQJ�FRPRUELGLWLHV�DQG�FRPSOHWH�ODERUD-
tory data during the baseline period, the boosted survival tree models had the 
highest discrimination, with 1- year, 3- year, 5- year, and 10- year survival rates 
of 0.77, 0.81, 0.84, and 0.88, respectively. The 1- year, 3- year, and 5- year 
discrimination was nearly identical in external validation. Secondary analyses 
with imputation of missing data and subgroups by etiology of liver disease 
had similar results to the primary model.
Conclusions: We developed and validated (internally and externally) a risk 
score to predict longer- term survival of patients with cirrhosis. This score 
would transform management of patients with cirrhosis in terms of referral to 
specialty care and treatment decision- making for non- liver- related care.
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INTRODUCTION

In 2017, there were 1.32 million worldwide deaths from 
cirrhosis, representing 2.4% of all deaths.[1] Cirrhosis- 
related mortality is increasing worldwide (44% increase 
in the last 20 years) and in the United States (65% 
increase from 1999 to 2016), most notably in older 
patients with NASH.[1– 4] For clinicians, the ability to 
predict longer- term survival of patients with cirrhosis 
is important to counsel them, especially in the face of 
complex treatment choices that may be related to their 
liver disease (e.g., transplantation) or comorbidity man-
agement where liver- related mortality may compromise 
outcomes and/or obviate the benefits of treatment. 
However, estimating longer- term liver- related survival 
for patients with cirrhosis with a high degree of accu-
racy remains a challenge because the focus of cirrho-
sis risk prediction has been short- term survival (i.e., 90 
days), the basis for waitlist priority in the United States 
and many other countries.

The Model for End- Stage Liver Disease (MELD) 
score was developed over two decades ago to predict 
short- term survival among patients waitlisted for trans-
plant.[5– 7] Despite refinements, it has poor discrimi-
nation among patients with low scores or as a tool to 
predict long- term survival.[5– 9] Although models have 
been developed to predict longer- term survival of pa-
tients with cirrhosis, each has important limitations. For 
example, a model developed using machine learning 
in the Veterans Health Administration (VHA) (1) had a 
decrement in performance beyond 1 year and (2) in-
cluded patients with life- limiting conditions (e.g., met-
astatic cancer, heart failure) that may have been just 
as likely to cause death compared to cirrhosis, thereby 
preventing the score from predicting liver- specific mor-
tality.[10,11] Another model used the MELD score and 
two- dimensional shear wave elastography but was 
limited by not excluding patients with major life- limiting 
medical comorbidities; performed best categorizing pa-
tients as having “good,” “intermediate,” or “poor” prog-
nosis; and focused only over a 2- year horizon.[12]

The ability to accurately predict cirrhosis- related 
mortality could provide tremendous benefits to patients 
and their surrogates. First, accurate survival predic-
tion could improve timing of referral for advanced cir-
rhosis care by identifying patients who would benefit 
from closer management by hepatologists and a mul-
tidisciplinary care team. Second, it could help patients 
and caregivers make health care decisions armed with 
accurate data about expected outcomes, especially 
with advanced care planning where limitations in sur-
vival prediction beyond the short term are a barrier.[13] 
Third, it could help guide clinical management where 
liver- related mortality may compromise outcomes and/
or obviate benefits of treatment (e.g., cancer therapy, 
surgical vs. medical management of cardiovascular 
disease). As the population with cirrhosis ages, these 

complex scenarios will become more common, espe-
cially because transplant is not an option for most pa-
tients.[14,15] We therefore sought to develop and validate 
(internally and externally) long- term risk scores among 
patients with cirrhosis without other life- limiting medical 
comorbidities (long- term cirrhosis survival [LTCS]).

PATIENTS AND METHODS

Data source for model development and 
internal validation

We conducted a retrospective cohort study among pa-
tients with cirrhosis in the VHA using an updated cohort 
(i.e., eligibility period and follow- up) of patients in the 
Veterans Outcomes and Costs Associated with Liver 
Disease study group.[16– 21] The VHA was selected be-
cause it (1) is the largest provider of liver care in the 
United States; (2) has a comprehensive electronic med-
ical record that includes inpatient and outpatient clini-
cal, laboratory, imaging, and prescription data tracked 
across all VHA facilities; (3) has complete death data 
ascertainment; and (4) has a diverse population that re-
flects the racial/ethnic distribution of the United States. 
Because only a fraction of patients with cirrhosis in the 
VHA are waitlisted for liver transplantation (LT),[22– 24] in 
contrast to transplant registry data where >50% of pa-
tients are transplanted within 1 year of waitlisting,[25,26] 
the VHA provides a unique opportunity to model the 
natural history of cirrhosis among a diverse cohort.

Data collection

Demographic, clinical, laboratory, imaging, and admin-
istrative coding data from all VHA sites were obtained 
from the VHA relational database, cancer data from the 
VHA Tumor Registry, and mortality data from the Vital 
Status File after approval from the institutional review 
boards at the University of Miami, the Miami Veterans 
Administration (VA) Health System, and the Corporal 
Michael J. Crescenz VA Medical Center.

Cohort selection

:H� LQFOXGHG� DGXOWV� DJHG� ���� \HDUV� DQG� ���� \HDUV�
at cirrhosis diagnosis between January 1, 2008, and 
December 28, 2018. Time zero (start of follow- up) was 
at cirrhosis diagnosis. The upper age limit was chosen to 
generalize to the LT waitlist population because <0.3% 
of waitlist additions are >75 years old.[27] Cirrhosis 
was defined using validated methods of one inpatient 
and/or two outpatient International Classification of 
Diseases, Ninth Revision (ICD- 9; 571.2 or 571.5) or 
ICD- 10 (K74.60, K74. 69, K70.30, K70.31) codes.[16– 21] 
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We restricted analyses to patients actively engaged 
LQ�FDUH�ZLWKLQ� WKH�9+$��L�H������RXWSDWLHQW�YLVLWV�� IURP�
January 1, 2008, to December 28, 2018.[16– 21] We ex-
cluded patients with HCC (based on diagnosis codes 
and VHA tumor registry) prior to their cirrhosis diag-
nosis, and censored at HCC diagnosis after the index 
date because predictors of survival in these patients 
include tumor- specific variables that do not apply to the 
general cirrhosis population and are beyond the scope 
of this work.

We excluded patients with non- liver life- limiting co-
morbidities that could be reliably ascertained using 
electronic medical record data. First, this allowed us 
to better focus on prediction of liver- related mortality 
by excluding conditions that would be a competing 
risk to liver- related mortality. Second, we excluded pa-
tients with absolute contraindications to LT to ensure 
that the score could be used to predict cirrhosis- related 
mortality and long- term survival benefit of transplant 
for potential transplant candidates. The specific crite-
ria are listed in Table S1, but the exclusions were (1) 
heart failure with a reduced ejection fraction (HFrEF) by 
echocardiogram, (2) severe obstructive/restrictive lung 
disease, (3) nonlocalized cancer (i.e., regional, lymph 
node, metastatic) or localized cancer (excluding non-
melanoma skin cancer and prostate cancer) diagnosed 
within 5 years of cirrhosis index date, and/or (4) uncon-
trolled HIV/AIDS.[28] The HFrEF exclusion required an 
abnormal echocardiogram, but patients with no echo-
cardiogram were included because >80% of patients 
with HFrEF are symptomatic and would be expected to 
have an echocardiogram.[29,30] We applied broad cri-
teria for cancer exclusions to exclude (1) nonliver can-
cer as a cause of mortality (i.e., competing risk to liver 
disease– related mortality) and (2) any cancer diagno-
sis that could contraindicate a transplant to generalize 
to the waitlist population.

Covariates

Models included baseline demographic (e.g., age), 
clinical (e.g., diabetes, complications of cirrhosis rather 
than decompensation stages, diabetes), and labora-
tory (e.g., international normalized ratio [INR], renal 
function) variables associated with short- term and/or 
long- term mortality in patients with cirrhosis. The time 
ZLQGRZ�WR�FROOHFW�EDVHOLQH�GDWD�ZDV�í����GD\V�WR�����
days from the cirrhosis index date, with the closest date 
selected when multiple laboratory values were availa-
ble. This time window reflects the standard approach 
in cohort studies using administrative data and has 
face validity that baseline data reflected the patient’s 
clinical status at cirrhosis diagnosis (i.e., rather than  
1 year prediagnosis). Renal function was modeled as  
(1) continuous estimated glomerular filtration rate 
(eGFR), using the Modification of Diet in Renal 

Disease- 4 equation[31– 33]; (2) acute kidney injury (cre-
DWLQLQH�LQFUHDVH�RI������PJ�GO�LQ�����K�DQG�RU�LQFUHDVH�
of >50% in 7 days)[34– 36]; and (3) chronic kidney dis-
ease (Kidney Disease: Improving Global Outcomes 
classification of eGFR < 60 ml/min/1.73 m2 at every 
time point over a 90- day period).[31– 33] These methods 
allowed us to quantify the degree of renal impairment 
using a continuous value (eGFR) and, when abnormal, 
whether it was acute, chronic, or acute on chronic kid-
ney injury. Complications of cirrhosis at diagnosis were 
ascertained using validated methods.[16– 21]

Statistical analysis

The primary outcome was overall survival, with mod-
els assessing discrimination at key time points, given 
the inability to specifically define liver- related versus 
liver- unrelated death.[2,37] Time- dependent receiver 
operating characteristic curves were constructed, and 
AUCs were compared at the 1- year, 3- year, 5- year, and 
10- year time horizons to determine comparative model 
performance. Specifically, we used the method of cu-
mulative sensitivity/dynamic specificity and truncated 
follow- up at 10 years (i.e., censored outcomes after 10 
years) due to the clinical focus of the model and the 
limited follow- up beyond this time point. We tested four 
model- building methodologies with the same possible 
covariates: (1) standard regression (Cox proportional 
hazards [PH]), (2) stepwise Cox PH, (3) machine- 
learning boosted survival trees, and (4) efficient neural 
networks.[11,38,39] These methods were used because 
many patients had only one respective lab value dur-
ing the baseline. For model development, we used an 
80/20 training/validation split, the standard method of 
model derivation/validation to maximize observations 
for training while providing sufficient sample size to 
provide narrow CIs in the validation.[40– 43] Model cali-
bration was performed in the VA training set.

For standard Cox PH models, we selected variables 
until the model’s AUC increased by <0.001[44] For step-
wise Cox PH, we used the stepAIC function from the 
MASS package where variables are selected and de-
selected to minimize the Akaike information criterion. 
For boosted survival trees, we used a standard ap-
proach whereby variables were trained on the outcome 
using a tree- based algorithm to create a set of shallow 
trees with the glmnet package that could not be more 
than a few levels deep, were iteratively selected and 
included by “slow learning,” and repeated for 1000 it-
erations with 10- fold cross- validation for calibrating 
the optimal iteration within the training set; additionally, 
the out of bag estimates were used in this calibration 
in order to best characterize test set optimization.[45– 47] 
These boosted survival trees are a type of ensemble 
method using more than one decision tree in the data 
mining process (i.e., in contrast to classification and 
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regression tree analysis that uses one decision tree). 
For efficient neural networks, variables were allowed 
to be partially in and out of the model through “slow 
learning” using the gbm package, with iterative model 
training to prevent overfitting of the data.[48,49] Elastic 
net Cox PH is a form of constrained optimization based 
on Cox regression where the idea is to “loosen” the fit in 
order to reduce overfitting on the training data with the 
aim of increasing predictive performance.

For the final model using boosted survival trees 
(results), there were no coefficients for individual vari-
ables (compared to beta coefficients from a logistic 
regression model) by virtue of it being a tree- based 
model.[45– 47] Therefore, we plotted relative variable im-
portances (VIMPs) for the model’s predictors, obtained 
by scaling the VIMP values from 0 to 1 by dividing by 
the maximum importance.[45,50] VIMP is obtained by 
randomly permuting each predictor and calculating the 
increase in error produced.[50] The higher the increase, 
the bigger a role that variable played in correctly pre-
dicting cases (converse is true). This metric is usually 
used when we have “black box” models where the role 
of predictors cannot be easily summarized directly from 
the trained model.[45,50] All models censored (compet-
ing risk models not possible using machine learning 
methods) patients at LT given that this interrupted the 
“natural history” of their cirrhosis (only 2.5% of the final 
cohort received a transplant during follow- up).

We selected the final model based on the highest 
discrimination (i.e., highest AUC truncating survival at 
10 years using the method described by Chambless 
and Diao[51]) and converted the output into a clinically 
LQWHUSUHWDEOH�ULVN�VFRUH�E\�����PXOWLSO\LQJ�;%(7$�E\�í��
so that higher scores were “better” (longer survival) 
and (2) multiplying the score by 10 to generate a scale 
comparable to the MELD score scale familiar to clini-
cians. Although the C- statistics reflect the score’s dis-
crimination as a continuous variable, we categorized 
patients into quartiles of LTCS score to demonstrate 
the score’s ability to stratify patients by actual survival. 
To graphically present data, we categorized the test-
ing cohort into four groups based on quartiles of their 
LTCS score to graph survival curves and to calculate 
the mean survival within each quartile. AUC values are 
accompanied by 95% CIs that were empirically derived 
through 20 replicates because (1) computation time for 
a cohort this size meant about 5 min per iteration and 
(2) at 20 replicates the CI was already very narrow due 
to the large sample size.

In primary analyses we performed complete- case 
analysis because the (1) data were not missing com-
pletely at random; (2) approach is consistent with meth-
ods used to develop other organ allocation scores (e.g., 
MELD[5- 7], Lung Allocation score); and (3) number of 
FDVHV�PLVVLQJ����GDWD�SRLQW�ZDV� ODUJH��!������ZKLFK�
may lead to unstable imputation with suboptimal per-
formance.[52– 54] However, to address potential biases, 

we performed a sensitivity analysis using imputation 
through the missForest package among patients miss-
ing one or two laboratory values to maximize the im-
putation’s performance while not imputing too many 
variables.[52– 55] After selecting the final model, we es-
timated survival time for a given LTCS score by multi-
plying the estimated baseline survival function for the 
entire population by the specific conditional estimated 
risk based on the boosting algorithm. This allowed us to 
calculate the overall estimated survival function for an 
individual, for which we could then determine the time 
at which we expected median survival and, therefore, 
reported predicted survival time.[51] Lastly, we calcu-
lated the Brier score of the final model to evaluate the 
accuracy of outcome predictions from our model[56] and 
fit calibration plots using a gradient- boosted, machine- 
based function to assess the agreement between the 
predicted and observed survival.[57]

External validation

We performed external validation using the OneFlorida 
Clinical Research Consortium, a statewide database of 
clinical and laboratory data from 11 health care sys-
tems and affiliated practices that provide health care to 
>40% of Floridians, reaching 15 million patients since 
its inception in 2013.[58– 60] The OneFlorida Consortium 
includes demographic, clinical (ICD- 9/10 codes), medi-
cation, and laboratory data.[58– 60] Therefore, it was a 
resource to externally validate the LTCS score in a di-
verse cohort of patients with available laboratory data. 
We identified patients with cirrhosis based on ICD- 9 
codes diagnosed on or after October 1, 2015 (introduc-
tion of ICD- 10 codes), and applied similar inclusions/
exclusions as in our main analysis. However, because 
OneFlorida does not have the same data as the VHA 
(e.g., echocardiograms), we had to rely only on ICD- 10 
codes for exclusionary diagnoses (e.g., HFrEF).

Secondary analyses

Although the MELD and MELD- Na scores were de-
veloped to predict 90- day mortality, we compared 
the performance of our four models to the MELD and 
MELD- Na scores over longer- term intervals and the 
final model to MELD and MELD- Na over a 90- day 
time horizon. We then fit models using the four vari-
ables in the MELD- Na score (sodium, INR, bilirubin, 
and creatinine) to our VHA cohort to compare the per-
formance of a score using these variables (with their 
respective beta coefficients fit based on the cohort) 
to the LTCS score. Second, we stratified the perfor-
mance of the final model based on etiology of cirrho-
sis. Third, we compared the performance of the LTCS 
score to the Fibrosis- 4 (FIB- 4) score, the aspartate 
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aminotransferase to platelet ratio index (APRI) score, 
and platelet count. Lastly, we assessed the final 
model’s performance in patients with “less advanced” 
forms of cirrhosis, defined three ways: (1) calculated 
MELD score < 10, (2) Child- Turcotte- Pugh class A, 
and (3) compensated cirrhosis.

RESULTS

From January 1, 2008, to December 28, 2018, there 
ZHUH���������YHWHUDQV�ZLWK����RXWSDWLHQW� YLVLWV�GLDJ-
nosed with cirrhosis, of whom 74,997 (46.0%) were 
excluded for age >75 years or a life- limiting medical 
comorbidity (heart failure exclusions, 27,040; AIDS/
uncontrolled HIV, 1394; severe lung disease, 23,929; 
cancer, 8200; Figure S1). Of the remaining 88,011 pa-
tients, 30,263 (34.3%) had complete laboratory data 
during the baseline; of 56,065 patients with incomplete 
laboratory data, 20,765 were missing one value, while 
������� ZHUH� PLVVLQJ� ��� ODERUDWRU\� YDOXHV�� $PRQJ�
these 88,011 patients, the median age at cirrhosis 
diagnosis was 60.1 years (interquartile range [IQR], 
55.4– 64.3), 81,845 (96.9%) were male, 54,492 (64.5%) 
were White non- Hispanic, 14,418 (17.1%) were Black 
non- Hispanic, 7,370 (8.7%) were White Hispanic, >75% 
had alcohol- related and/or HCV- related liver disease, 
and 23,171 (27.4%) and 15,760 (18.7%) had ascites and 
HE at cirrhosis diagnosis, respectively, similar to other 
published cohorts.[4] Those with complete laboratory 
data were objectively sicker with higher mortality/lower 
survival (Table 1). The median follow- up was 1586 days 
(IQR, 864.25– 2641 days), and the median time to event 
was 653 days (IQR, 211– 1399.75 days).

Model output for risk scores

The boosted survival tree had the highest discrimination, 
and the model using missForest imputation had similar, 
but slightly lower, discrimination as the complete- case 
analysis (Table 2). The model had excellent prediction 
with a Brier score of 0.06, with calibration plots show-
ing excellent calibration (Figure S2A– D). Of the vari-
ables in the boosted survival tree model, albumin was 
the strongest predictor of survival, followed by biliru-
bin, INR, and ascites, while the interactions of eGFR 
× acute kidney injury and chronic kidney disease were 
the weakest (Figure 1).

There was a separation in survival within the first 
year after cirrhosis diagnosis, with a nearly 40% dif-
ference in the mortality rate between patients in the 
top and bottom quartiles at 1 year, which increased to 
nearly 60% at 3 years (Figure 2A; Table S2). The me-
dian survival time ranged from 1.95 years (lowest quar-
tile) to 12.0 years (highest quartile), with some overlap 
in the IQRs (Figure 2B).

External validation

The OneFlorida Clinical Research Consortium in-
cluded 31,720 patients with cirrhosis, of whom 17,127 
met inclusion/exclusion criteria and 7147 (41.7%) had 
full laboratory data. Their clinical and laboratory data 
were similar to those of the VHA cohort (Table S3), with 
the exception of nearly 40% of patients being female 
and higher 1- year, 3- year, and 5- year survival rates. 
The AUC of the model at the 1- year, 3- year, and 5- year 
time points was nearly identical to that of the VHA co-
hort (Table 2).

Secondary analyses

At the 1- year time horizon, the MELD- Na score had 
similar discrimination to the LTCS score, but while the 
MELD- Na discrimination decreased over time, the 
boosted survival tree LTCS model improved (Table 3; 
performance using the MELD- Na components with re-
calibrated beta coefficients was similar to that of the 
original MELD- Na). Furthermore, the LTCS score had 
superior discrimination at 90 days (Table 3). The final 
LTCS model had excellent discrimination across all dis-
ease entities (Table 4). There was a slight decrement 
in performance in patients with a baseline MELD score  
< 10 or compensated cirrhosis, although the perfor-
mance at 10 years was excellent, with similar perfor-
mance in patients with Child- Turcotte- Pugh class A 
cirrhosis (Table 5). The LTCS model performed sub-
stantially better than the APRI and FIB- 4 scores, as well 
as a model only using baseline platelet count (Table S4). 
An interactive version of the LTCS calculator is available 
online at: https://amant ero.shiny apps.io/plite s/.

DISCUSSION

Using machine learning methods and >10 years of data, 
we developed a model with excellent ability to predict 
1- year, 3- year, 5- year, and 10- year survival of patients 
with cirrhosis. Not only did we develop and internally 
validate the risk score but we externally validated it in 
a distinct cohort that generalizes to the broader pop-
ulation of patients with cirrhosis. This risk score can 
improve clinical care by better prognosticating patient 
survival, counseling patients and their close associates 
on treatment options and advanced care planning with 
better information, helping to select patients to refer for 
advanced cirrhosis care, and potentially in the future, 
allocating donor livers in a manner that optimizes the 
benefit of a scarce resource by considering longer- term 
survival benefit.

The LTCS score advances the field by predicting 
long- term outcomes among patients with cirrhosis 
with high discrimination using an externally validated 

https://amantero.shinyapps.io/plites/
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TA B L E  1  &OLQLFDO�DQG�ODERUDWRU\�GDWD�RI�SDWLHQWV�ZLWK�FLUUKRVLV�����\HDUV�RI�DJH�ZLWKRXW�FRQWUDLQGLFDWLRQV�WR�/7a

Variable at time of diagnosis of cirrhosis Analytic cohort (n = 30,263)
Excluded cohort  
(n = 57,748)b

Male gender, n (%) 29,354 (97.0) 55,976 (96.9)

Age, median (IQR), years 60.1 (55.4– 64.2) 60.2 (20.8– 75.0)

Race/ethnicity, n (%)

White non- Hispanic 19,509 (64.5) 37,254 (64.5)

Black non- Hispanic 5217 (17.2) 9854 (17.1)

White Hispanic 2777 (9.2) 4921 (8.5)

Pacific Islander 229 (0.8) 463 (0.8)

Asian 120 (0.4) 189 (0.3)

Black Hispanic 61 (0.2) 180 (0.3)

Other 1138 (3.8) 2777 (4.8)

Unknown 1212 (4.0) 2110 (3.7)

Etiology of liver disease, n (%)

EtOH- related liver disease only 9971 (32.9) 19,982 (34.6)

+&9���(W2+��UHODWHG�OLYHU�GLVHDVH 9101 (30.1) 13,482 (23.3)

HCV only 5439 (18.0) 8746 (15.1)

NASH 2635 (8.7) 6113 (10.6)

Cryptogenic 1883 (6.2) 6972 (12.1)

HBV 651 (2.2) 1086 (1.9)

Hemochromatosis 271 (0.9) 557 (1.0)

PBC 137 (0.5) 357 (0.6)

AIH 93 (0.3) 229 (0.4)

PSC 82 (0.3) 224 (0.4)

Ascites, n (%) 10,383 (34.3) 13,748 (23.8)

Encephalopathy, n (%) 6716 (22.2) 9683 (16.8)

SBP, n (%) 1916 (6.3) 2697 (4.7)

Diabetes, n (%) 3309 (10.9) 2005 (3.9)

CKD, n (%)c 4705 (15.5) 5178 (9.0)

eGFR, median (IQR), mL/min/1.73 m2 c 90.8 (71.0– 110.0) 88.4 (71.4– 107)

Sodium, median (IQR), mEq/Lc 138 (135– 140) 138 (136– 140)

Albumin, median (IQR), g/Lc 3.4 (2.7– 3.9) 3.6 (3.0– 4.0)

INR, median (IQR)c 1.2 (1.1– 1.4) 1.17 (1.0– 1.4)

Total bilirubin, median (IQR), mg/dLc 1.1 (0.7– 2.1) 1.0 (1.1– 1.4)

AST, median (IQR), units/Lc 60 (36– 100) 52 (32.0– 89.0)

ALT, median (IQR), units/Lc 43 (27– 73) 41 (26– 70)

AST/ALT ratio, median (IQR)c 1.3 (1.0– 1.9) 1.3 (0.9– 1.7)

Alkaline phosphatase, median (IQR), IU/Lc 106 (78– 150) 100 (75– 140)

Hemoglobin, median (IQR), g/dlc 13.1 (11.2– 14.6) 13.5 (11.8– 14.9)

Platelet count, median (IQR), 103/μlc 125 (85– 181) 133 (90– 191)

Unadjusted survival

1- year 83.1% (82.6– 83.5%) 87.4% (87.2– 87.7%)

3- year 65.3% (64.7– 65.8%) 71.0% (70.6– 71.4%)

5- year 50.8% (50.2– 51.4%) 58.2% (57.7– 58.6%)

10- year 27.4% (26.6– 28.1%) 36.8% (36.3– 37.4%)

Abbreviations: AIH, autoimmune hepatitis; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CKD, chronic kidney disease; EtOH, ethyl 
alcohol; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; SBP, spontaneous bacterial peritonitis.
aThe analytic and excluded cohorts were statistically significantly different (p < 0.05) for all comparisons except for gender (p = 0.61) and chronic kidney 
disease (p = 0.12).
bIncludes patients with insufficient lab data and/or death date concurrent with a diagnosis of cirrhosis.
cLab data presented for patients in the excluded cohort, when available.
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risk score. In contrast to studies using transplant reg-
istry data, we used VHA data to model the “natural 
history” of cirrhosis without being interrupted by LT.[27] 
LTCS has several features that make it a superior 

alternative to the score developed by the Baylor group 
using VHA data[11]: (1) higher discrimination (i.e., AUC) 
that improves over longer follow- up, 2) generalizabil-
ity to a transplant/transplant- eligible population due to 

TA B L E  2  Model discrimination for mortality prediction for patients with cirrhosis using four model- building approachesa

Model 1- year AUC 3- year AUC 5- year AUC 10- year AUC

Candidate risk models in internal 
validation cohortb

Boosted survival trees 0.77 (0.77– 0.77) 0.81 (0.81– 0.82) 0.84 (0.83– 0.84) 0.88 (0.87– 0.88)

Efficient neural network 0.70 (0.69– 0.70) 0.71 (0.71– 0.72) 0.73 (0.73– 0.73) 0.76 (0.76– 0.77)

Cox PH 0.72 (0.72– 0.73) 0.74 (0.74– 0.74) 0.76 (0.75– 0.76) 0.79 (0.79– 0.79)

Stepwise Cox PH 0.72 (0.72– 0.73) 0.74 (0.74– 0.74) 0.76 (0.75– 0.76) 0.79 (0.79– 0.79)

MELD- Na (traditional model) 0.75 (0.72– 0.78) 0.68 (0.68– 0.69) 0.70 (0.69– 0.70) 0.72 (0.72– 0.73)

Performance of boosted survival tree 
model using imputationc

0.75 (0.75– 0.76) 0.77 (0.77– 0.77) 0.78 (0.78– 0.78) 0.81 (0.81– 0.81)

External validation of boosted survival 
tree model in OneFloridad

0.77 (0.77– 0.78) 0.80 (0.80– 0.81) 0.83 (0.82– 0.83) N/A

Abbreviations: N/A, not available.
aThe variables in the final model (boosted survival trees) with the highest predictive performance included age, baseline eGFR, chronic kidney disease (yes/
no), sodium, diabetes mellitus (yes/no), HE, ascites, spontaneous bacterial peritonitis, albumin, INR, bilirubin, acute kidney injury, aspartate aminotransferase, 
alanine aminotransferase, aspartate aminotransferase/alanine aminotransferase ratio, alkaline phosphatase, hemoglobin, platelet count, interaction of eGFR 
× acute kidney injury. The 95% CIs were obtained by rerunning the analyses using 20 replicate bootstraps. Beta coefficients are not available for this type of 
model.
bComplete- case analysis included 30,263 patients.
cThe multiple imputation included 63,487 patients.
dBased on external validation of 7147 patients with cirrhosis meeting inclusion/exclusion criteria with full laboratory data. Earliest index date of cirrhosis was 
October 1, 2015, so model performance capped at 5 years.

F I G U R E  1  Relative VIMP plot for predictors included in the boosted survival model. Relative VIMPs obtained by scaling the VIMP 
values from 0 to 1 by dividing by the maximum importance. VIMP is obtained by randomly permuting each predictor and calculating the 
increase in error produced. The higher the increase, the bigger a role that variable played in correctly predicting cases.[45,50] Abbreviations: 
aki, acute kidney injury; alb, albumin; alkphos, alkaline phosphatase; alt, alanine aminotransferase; asc, ascites; ast, aspartate 
aminotransferase; astaltrat, aspartate aminotransferase to alanine aminotransferase ratio; bili, bilirubin; ckd, chronic kidney disease; diab, 
diabetes; egfr, EGF receptor; hgb, hemoglobin B; plt, platelets; sbp, spontaneous bacterial peritonitis
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age and comorbidity exclusions, (3) external validation 
in a population that was 40% female, and (4) greater 
focus on liver- related mortality by not including a co-
morbidity index. The latter point is underscored by the 
fact that the covariate with the highest point estimate 
in the Baylor score was a cirrhosis- specific comorbid-
ity score, demonstrating how its performance relies 
in part on predicting mortality from non- liver- related 
comorbidities. Additional strengths of our study are 
that we had a large sample size, assessed model 
discrimination imputation of missing data in addition 
to complete- case analysis, and performed external 

F I G U R E  2  Survival of VHA validation cohort based on quartile of LTCS scores. (A) Survival probabilities of validation cohort based 
on quartile of LTCS score. (B) Absolute survival of validation cohort based on quartile of LTCS score. Quartiles of LTCS score are from the 
validation cohort of patients in the VHA

TA B L E  3  Model discrimination for mortality prediction for 
patients with cirrhosis using boosted survival trees versus  
MELD- Na in the 20% VA testing cohorta

Boosted survival 
trees AUC MELD- Na AUC

3- month 0.74 (0.74– 0.75) 0.67 (0.66– 0.67)

1- year 0.77 (0.77– 0.77) 0.75 (0.72– 0.78)

3- year 0.81 (0.81– 0.82) 0.68 (0.68– 0.69)

5- year 0.84 (0.83– 0.84) 0.70 (0.69– 0.70)

10- year 0.88 (0.87– 0.88) 0.72 (0.72– 0.73)
an = 6053 for the 20% sample.
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validation, thereby overcoming the most common 
methodological limitations of studies that use machine 
learning to develop risk prediction models.[61]

The ability to accurately predict cirrhosis- related 
mortality could provide tremendous benefits to patients 
and their surrogates. First, accurate survival predic-
tion could improve timing of referral to a tertiary care 
center (e.g., transplant center) for advanced cirrhosis 
care.[14,15] Although multidisciplinary hepatology care is 
associated with lower mortality rates for patients with 
cirrhosis,[62] referral to a specialty/transplant center is 
often not considered outside of context transplanta-
tion.[14,15] Providers frequently use the MELD score as 
a trigger to refer a patient for advanced cirrhosis care, 
even though some patients with low MELD scores are 
at a substantial risk of death.[5– 9] Use of the LTCS score 
could therefore improve the care of patients with cirrho-
sis and help to mitigate racial disparities in access to 
specialty cirrhosis care.[63] For example, a patient with 
a MELD score of 10 could have an LTCS score that 
confers a 3- year mortality of almost 50%. In the context 
of transplantation, such a patient could be advised to 
consider a living donor liver transplant given that it may 
be associated with superior survival over a longer- term 
time horizon (e.g., 3– 5 years) and allow for transplan-
tation before the patient develops complications (e.g., 
sarcopenia, frailty, chronic kidney disease) that may 
compromise long- term posttransplant outcomes.[31,32] 
Outside of transplantation, this patient could bene-
fit from advanced hepatology care given an expected  
5- year survival rate that is lower than that of regional 
colorectal cancer. And although organ allocation 

currently focuses on a “sickest first” approach based 
on short- term waitlist mortality, if in the future an inte-
grated survival benefit– based approach that accounted 
for longer- term pretransplant and posttransplant sur-
vival probability were implemented, then the LTCS 
score could be integrated with the previously developed 
LITES scores (i.e., posttransplant survival).[31,32] Such 
an approach provides a superior population- based ap-
proach to allocation that ensures maximal life- years 
gained from the scarce supply of donor livers but re-
quires a tool such as LTCS to predict cirrhosis- related 
mortality.

Second, the ability to predict longer- term liver- 
related survival can help clinical management in situ-
ations where liver- related mortality may compromise 
outcomes and/or obviate the benefits of treatment. For 
example, if a patient with cirrhosis is diagnosed with 
intermediate- stage lung cancer that is potentially cur-
able by therapy with adverse side effects but the pre-
dicted survival is 18 months, the patient may conclude 
that the risks of aggressive cancer therapy may out-
weigh the benefits. Conversely, if the predicted 5- year 
liver- related survival is high, the benefits of aggressive 
therapy likely outweigh the risks. Or a patient with pros-
tate cancer could consider the expected liver- related 
survival in the context of treatment decisions that would 
impact recovery and quality of life (e.g., surgery vs. 
radiation). As the population with cirrhosis ages and 
transplantation continues to remain an option for a lim-
ited number of patients, such clinical scenarios will be-
come even more common. Although we excluded such 
patients (e.g., advanced cancer) from our study, we 

TA B L E  4  Model discrimination for mortality prediction for patients with cirrhosis based on etiology of liver disease using final boosted 
survival tree model in the 20% VA testing cohorta

Model 1- year AUC 3- year AUC 5- year AUC 10- year AUC

All patients 0.77 (0.77– 0.77) 0.81 (0.81– 0.82) 0.84 (0.83– 0.84) 0.88 (0.87– 0.88)

Alcohol- associated liver 
disease

0.77 (0.76– 0.78) 0.82 (0.82– 0.83) 0.86 (0.86– 0.87) 0.91 (0.90– 0.91)

Hepatitis C 0.76 (0.75– 0.76) 0.78 (0.77– 0.79) 0.80 (0.79– 0.80) 0.83 (0.82– 0.83)

NASH 0.76 (0.75– 0.77) 0.79 (0.78– 0.81) 0.82 (0.80– 0.84) 0.87 (0.85– 0.89)

Autoimmune hepatitis 0.74 (0.66– 0.82) 0.78 (0.68– 0.87) 0.80 (0.70– 0.89) 0.82 (0.71– 0.93)

Cholestatic liver disease 0.74 (0.65– 0.83) 0.78 (0.68– 0.88) 0.81 (0.73– 0.90) 0.88 (0.80– 0.96)
aPrediction accuracy based on the AUC for patients in the VHA test data set based on etiology of liver disease for the 20% testing sample of 6053 patients

TA B L E  5  Secondary analyses assessing model discrimination for mortality prediction for specific subgroups of patients with cirrhosisa

Model 1- year AUC 3- year AUC 5- year AUC 10- year AUC

All patients 0.77 (0.77– 0.77) 0.81 (0.81– 0.82) 0.84 (0.83– 0.84) 0.88 (0.87– 0.88)

Baseline MELD score < 10 0.73 (0.73– 0.74) 0.77 (0.76– 0.77) 0.79 (0.78– 0.80) 0.83 (0.84– 0.84)

Child- Turcotte- Pugh class A 0.71 (0.70– 0.72) 0.78 (0.77– 0.79) 0.84 (0.83– 0.85) 0.91 (0.91– 0.93)

Compensated cirrhosisb 0.72 (0.71– 0.72) 0.73 (0.73– 0.74) 0.75 (0.74– 0.75) 0.78 (0.78– 0.79)
aPrediction accuracy based on the AUC for patients in the VHA test data set based on etiology of liver disease.
bExcluded patients with a history of a hepatic decompensation event (e.g., ascites) at baseline.



10 |   LONG-TERM PREDICTION OF DEATH FOR PATIENTS WITH CIRRHOSIS

believe this is a strength because it allowed us to bet-
ter predict cirrhosis- related survival to help inform such 
clinical decisions. Had we included such patients, we 
would not have been able to determine whether their 
death, especially if limited survival, was from cirrhosis 
or a preexisting life- limiting comorbidity. Therefore, the 
LTCS score provides important data that differ from 
those of other cirrhosis risk scores in that they focus to 
a greater degree on cirrhosis- related mortality. Third, 
the ability to predict longer- term survival of patients 
with cirrhosis could improve the process of advanced 
care planning, for which deficits are partly attributable 
to a lack of data beyond short- term outcomes.[13]

The LTCS score can be integrated into routine care. 
The data elements are collected through regular care, 
and the laboratory components only require three tests: 
comprehensive metabolic panel, complete blood count, 
and prothrombin time/INR. Despite the number of data 
points, they easily could be entered into an online cal-
culator (in development) and/or integrated into the med-
ical record with direct data uploading (e.g., using a “dot” 
phrase in Epic with back- end calculation of the LTCS 
score). Further, our score was developed and validated 
in populations across the spectrum from academic 
tertiary care centers to community- based clinics and 
included an external validation cohort that was nearly 
40% female (in contrast to the VHA population).

Our study has limitations. First, the patient population 
and model of health care in the VHA may not general-
ize to all populations. However, the short- term survival 
of patients with decompensated cirrhosis in the VHA 
mirrors that of other cohorts, and our model performed 
nearly identically in external validation in a cohort that 
may be better representative of the broader population 
with cirrhosis with respect to certain factors (e.g., etiol-
ogy of liver disease, gender, higher overall survival than 
the VHA cohort).[19,20] Second, although we excluded 
patients with major life- limiting medical comorbidities, 
we included some patients who might have conditions 
(e.g., diastolic heart failure) that could impact non- liver- 
related survival but are less reliably ascertained in 
electronic medical record data. Third, our cancer ex-
clusion was broad; therefore, we may have excluded 
patients without survival limited by cancer. While this 
exclusion may impact external validity, it ensured in-
ternal validity by excluding patients who could have a 
non- liver- related condition (i.e., cancer) that could lead 
to a substantial competing risk of mortality. Fourth, we 
excluded patients with HCC, though this still allows this 
score to be applied to the overwhelming majority of pa-
tients with cirrhosis. Fifth, the complete- case analysis 
led to exclusion of many patients. However, this did not 
lead to biased results (i.e., excellent model performance 
using multiple imputation) in external validation. Sixth, 
as is the case with other cirrhosis risk models, we fo-
cused on variables at the time of diagnosis and did not 

account for outcome- modifying treatments (e.g., beta- 
blockers for clinically significant portal hypertension) 
or time- varying hepatic decompensation events[12,24] 
given the use of machine learning models. Lastly, we 
did not include the location of cirrhosis diagnosis (i.e., 
inpatient vs. outpatient).

In summary, we developed and validated a risk score 
with excellent discrimination in predicting intermediate- 
term and longer- term mortality of patients with cirrhosis. 
By excluding patients with life- limiting comorbidities, our 
score can be used to better predict liver- related mor-
tality among LT- eligible patients and broader cohorts 
with cirrhosis. Future work is needed to determine how 
incorporating this risk score could impact decisions to 
refer patients for LT and/or prioritize them in the context 
of a survival benefit– based approach to allocation.
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