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ABSTRACT  

Objective: The human endogenous protein Galectin-9 (Gal-9) reactivates latently HIV-infected 
cells in vitro and ex vivo, which may allow for immune-mediated clearance of these cells. 
However, Gal-9 also activates several immune cells, which could negatively affect HIV 
persistence by promoting chronic activation/exhaustion. This potential “double-edged sword” 
effect of Gal-9 raises the question of the overall impact of Gal-9 on HIV persistence in vivo.  

Design: We used the BLT (bone marrow, liver, thymus) humanized mouse model to evaluate the 
impact of Gal-9 on HIV persistence in vivo during antiretroviral therapy (ART). 

Methods: Two independent cohorts of ART-suppressed HIV-infected BLT mice were treated with 
either recombinant Gal-9 or PBS control. Plasma viral loads and levels of tissue-associated HIV 
DNA and RNA were measured by qPCR. Immunohistochemistry and HIV RNAscope were used 
to quantify CD4+ T, myeloid, and HIV RNA+ cells in tissues. T cell activation and exhaustion 
were measured by flow cytometry, and plasma markers of inflammation were measured by 
multiplex cytokine arrays. 

Results: Gal-9 did not induce plasma markers of inflammation or T cell markers of 
activation/exhaustion in vivo. However, the treatment significantly increased levels of tissue-
associated HIV DNA and RNA compared to controls (P=0.0007 and P=0.011, respectively, for 
cohort I and P=0.002 and P=0.005, respectively, for cohort II). RNAscope validated the Gal-9 
mediated induction of HIV RNA in tissue-associated myeloid cells, but not T cells.     

Conclusions: Our study highlights the overall adverse effects of Gal-9 on HIV persistence and the 
potential need to block Gal-9 interactions during ART-suppressed HIV infection. 
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INTRODUCTION 

The persistence of HIV latently-infected cells, in blood and tissues, remains a barrier to a cure for 
HIV infection [1]. Persistent latently-infected cells do not express enough viral antigens to be 
eliminated by the immune system. Different strategies to reactivate these cells have been proposed, 
including using the human lectin Galectin-9 (Gal-9) [2, 3]. However, Gal-9 activates and expands 
several immune cells (including T  and myeloid cells [4-9]), which can lead to several undesirable 
effects. Indeed, recent studies showed that Gal-9, which is rapidly and sustainably elevated during 
HIV infection [10], may contribute to the state of chronic immune activation and inflammation 
during HIV infection [7, 11, 12]. These mixed effects of Gal-9 raise the question of the overall effects 
of Gal-9 on HIV persistence. In this short report, we investigate the overall beneficial versus 
detrimental impact of Gal-9 on HIV persistence in vivo, during antiretroviral therapy (ART) 
suppression, using a humanized mouse model (the bone marrow-liver-thymus humanized (BLT) 
model). 

METHODS 

Generation of the BLT mice. Two independent cohorts of BLT mice were generated as previously 
described [13, 14], in accordance with The Wistar Institute Animal Care and Research Committee 
regulations (protocol# 201360). Briefly, 6-8 weeks old female NSG (NOD.Cg-Prkdcscid 
Il2rgtm1Wjl/SzJ, Jackson Laboratory) mice were pretreated with busulfan at 30mg/kg and were 
then implanted with human fetal thymic tissue fragments and fetal liver tissue fragments under the 
murine renal capsule. Following the surgery, mice were injected via the tail vein with CD34+ 
hematopoietic stem cells isolated from human fetal liver tissues. Human fetal liver and thymus 
tissues were procured from Advanced Bioscience Resources (Alameda, CA). Twelve weeks post-
surgery, human immune cell reconstitution in peripheral blood was determined using the 
Symphony flow cytometer (BD Biosciences, San Jose, CA) using the following antibodies: 
mCD45-AF700, hCD45-FITC, hCD3-BUV805, hCD4-BUV395, hCD8-PerCP-Cy5.5 and Fixable 
Viability Stain 510 (catalog# 560510, 555482, 612895, 563550, 565310, and 564406, respectively; 
BD Biosciences, San Jose, CA). Data were analyzed with FlowJo (FlowJo LLC, Ashland, OR). 

HIV infection, ART suppression, and Gal-9 treatment. BLT mice from each cohort were 
randomly divided into two groups and were infected intravenously (IV) with 1×104 TCID50 of 
HIVSUMA. Peripheral blood was collected weekly for plasma viral load assay. Two weeks post-
infection, mice were placed on a diet combined with ART (1,500mg/kg Emtricitabine, 1,560mg/kg 
Tenofovir-Disoproxil-Fumarate, and 600mg/kg Raltegravir). Five weeks post-ART, mice were 
treated with phosphate-buffered saline (PBS) control or 2 mg/kg recombinant Gal-9 for two weeks 
(intraperitoneal (IP) injections every other day; seven doses) during ART suppression. Mice were 
then euthanized, and blood and tissues were collected. 

Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.



ACCEPTED

 

Measuring plasma viral load by qPCR. Plasma viral loads were measured as previously described 
[13, 14].  

Measuring cell-associated HIV DNA and RNA by qPCR. A single-cell suspension was generated 
using the gentleMACS™ Octo Dissociator (San Diego, CA). DNA and RNA were extracted using 
AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, catalog # 80224). Cell-associated HIV DNA 
and RNA were measured as previously described [15].  

Immunohistochemistry and quantitative image analysis (QIA). Immunohistochemical staining 
and QIA were performed as previously described [16]. In brief, immunohistochemistry was 
performed using a biotin-free polymer approach (Golden Bridge International) on 5-μm tissue 
sections mounted on glass slides, which were dewaxed and rehydrated with double-distilled water. 
Multistaining of CD4/CD68/CD163 to quantify CD4+ T cells was performed. This multistaining 
approach allows the intense staining of the macrophage/myeloid cell markers to mask the faint 
CD4 expressed on these cells and to distinctly identify CD4+ T cells from myeloid lineage cells. 
Heat-induced epitope retrieval was performed by heating sections in 0.01% citraconic anhydride 
containing 0.05% Tween-20, then incubated with primary antibody to CD4 (Goat anti-CD4, R&D 
system ref: AF-379-NA), CD68 (Rabbit anti-CD68, Sigma ref: HPA048982) and CD163 (rabbit 
anti-CD163, Lifespan Biosciences ref: LS-B2661). All slides were scanned at high magnification 
(×200) using the AT2 System (Aperio Technologies), yielding high-resolution data from the entire 
tissue section. Representative regions of interest (500 × 500 μm) were identified, and high-
resolution images were extracted from these whole-tissue scans. The percentage area of the 
positive cell zone was quantified using CellProfiler version 3.1.5. 

HIV clade B lineage-specific in situ hybridization and phenotyping. HIV-1 in situ hybridization 
was performed as previously described [17]. RNAscope (probe HIV-B, ACD, ref: 416111) was 
combined with immunofluorescence assay (IFA) to identify the cells harboring vRNA. Slides were 
co-stained with CD4 or CD3 (rabbit anti-CD3, Thermo ref: RM-9107-S) and CD68+CD163 to 
distinguish CD4+ T cells and myeloid cells. High magnification confocal images were collected 
from regions of interest using an Olympus FV10i confocal microscope using a 60x phase contrast 
oil-immersion objective (NA 1.35) imaging using sequential mode to separately capture the 
fluorescence from the different fluorochromes at an image resolution of 1024x1024 pixels. Cells 
harboring vRNA were quantified using Fiji.  

Measuring markers of T cell activation and exhaustion by flow cytometry. Cell suspension was 
stained with the following antibodies: CD45-AL700 (clone: 2D1; Biolegend), CD8-FITC (clone: 
HIT8a; BD Biosciences), CD38-APC (clone: HIT2; BD Biosciences), HLA-DR-APC-H7 (clone: 
G46-6; BD Biosciences), CD4-V450 (clone: RPA-T4; BD Biosciences), PD-1-PE (clone: 
NAT105; Biolegend), and CD3-PE-CF594 (clone: UCHT1; BD Biosciences). Data were collected 
on a BD Biosciences LSRII flow cytometer (gating strategy is in Supplementary Figure 1, 
http://links.lww.com/QAD/C739).  
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Measuring plasma markers of inflammation. Markers of inflammation were measured using U-
PLEX Biomarker Group 1 Assay from Meso Scale Discovery (MSD catalog # K15067L-2).   

Statistical analysis. The Shapiro–Wilk test was used to test for data normality. Parametric T-tests 
were then used to analyze normally-distributed datasets, and non-parametric T-tests were used to 
analyze non-normally distributed datasets using Prism 9.0 (GraphPad). 

RESULTS 

Gal-9 treatment is tolerable in vivo but increases levels of tissue-associated HIV DNA and 
RNA during ART. We generated two independent cohorts of humanized mice (n=8 for cohort I 
and n=6 for cohort II) (Fig 1A-B). BLT mice were infected with HIV (HIVSUMA 
transmitted/founder virus) and then placed on ART two weeks post-infection. During ART 
suppression, mice were treated with either PBS or 2 mg/kg recombinant human Gal-9 for two 
weeks. We did not observe any signs of toxicity or weight loss (Fig. 1C) in the Gal-9 treated mice 
compared to controls, suggesting this concentration was generally tolerable in ART-suppressed 
HIV-infected BLT mice. Plasma HIV viral loads (Fig. 1D) indicate that, in both cohorts, the 
infection was successful and resulted in 5.5605 (median) and 6.7705 (average) HIV copies/ml 
plasma by the second week post-infection and that ART suppressed the virus to below the limit of 
detection. We next examined cell-associated HIV RNA and DNA levels in the liver, lung, and 
spleen. We found that Gal-9 treatment increased the levels of tissue-associated HIV DNA 
(P=0.0007) and RNA (P=0.0106) in cohort I. Consistently, in cohort II, Gal-9 increased tissue-
associated HIV DNA (P=0.0019) and RNA (P=0.0047) (Fig. 1E).  

Staining of liver and spleen demonstrated that levels of both CD4+ T cells and myeloid cells in 
tissues were not significantly different between the two groups (Fig. 1F), excluding the possibility 
the Gal-9-mediated induction of cell-associated HIV DNA and RNA was due to different levels of 
human cells in tissues. In addition, we used RNAscope to quantify levels of HIV RNA+ CD4+ T 
or myeloid cells in the liver and spleen (Fig. 1G) and validated that Gal-9 induces levels of HIV 
RNA in myeloid cells, but not T cells. Collectively, these data suggest that the overall impact of 
Gal-9 on HIV persistence is negative, and that Gal-9 may expand tissue-associated HIV reservoirs 
during ART.   

Gal-9 treatment does not significantly induce markers of inflammation of T cell activation. 
Next, we examined whether Gal-9 exhibits its adverse effects on HIV persistence by inducing T 
cell activation/exhaustion or systemic inflammation. We first examined CD4+ and CD8+ T cell 
activation/exhaustion markers in blood and spleen. Gal-9 treatment did not significantly induce T 
cell activation (as measured by the co-expression of CD38 and HLA-DR) or exhaustion (as 
measured by PD-1 expression) in blood (Fig. 2A) or tissues (Fig. 2B). Next, we examined the 
plasma levels of several cytokines. While Gal-9 treatment reduced the levels of IL-33 (p=0.0321), 
it did not significantly alter the systemic levels of several cytokines involved in inflammation (Fig. 
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2C). These data suggest that Gal-9 does not induce generalized T cell activation or systemic 
inflammation. 

   

DISCUSSION  

A comprehensive understanding of the overall impact of viral and host factors that modulate HIV 
persistence is critical to developing curative strategies for HIV. Gal-9 is one of the endogenous 
host immune-modulatory factors that has been recently associated with opposing effects on HIV 
infection [10, 18, 19]. Several studies have highlighted the potential beneficial effects of Gal-9 during 
HIV infection. First, Gal-9 renders CD4+ T cells less susceptible to HIV infection via induction of 
the host restriction factor cyclin-dependent kinase inhibitor 1 (p21) [20]. Second, recombinant Gal-
9 induces HIV transcription and reverses HIV latency in vitro and ex vivo [2, 3]. This ability of Gal-
9 to induce latent HIV transcription suggested that it could be considered within the “shock and 
kill” HIV eradication framework [2, 3]. However, on the other hand, several other studies have 
highlighted the detrimental effects of Gal-9 during HIV infection. First, endogenous Gal-9 rapidly 
increases after HIV infection [10] and does not return to normal after suppressive ART [10]. These 
persistent elevated Gal-9 levels are associated with higher HIV transcription in vivo in the blood 
of HIV-infected ART-suppressed individuals [2], and several studies suggest that Gal-9 may 
contribute to the state of chronic immune activation and inflammation during HIV infection [7, 11, 

12]. Second, Gal-9 increases HIV entry by inducing the CD4+ T cell-surface concentration of 
protein disulfide isomerase (PDI) [21]. Lastly, Gal-9 modulates HIV transcription by activating the 
TCR-downstream signaling pathways in vitro [4]. Due to these pleiotropic effects of Gal-9 on HIV, 
we sought to evaluate whether the overall impact of Gal-9 on HIV persistence is beneficial or 
detrimental in vivo.  

Using the BLT humanized mouse model of HIV infection, we found that Gal-9 can directly expand 
HIV reservoirs and exhibit overall adverse effects on HIV persistence. These effects would limit 
the potential use of Gal-9 to reduce viral reservoirs by itself. However, future studies will be 
needed to investigate whether Gal-9, together with added immune effector strategies, would 
positively affect HIV persistence. Future studies will also be needed using larger animal models 
with a more intact immune system than the BLT humanized mouse model. In our study, we used 
tissues from two human donors; additional human donors will be needed to minimize potential 
biases from donor-to-donor variation. Finally, future studies will be needed to examine the 
lineages and the replication-competency of the HIV provirus expanded by Gal-9. Together, these 
investigations will be required to examine the mechanisms underlying our in vivo observations.  

Our data show that the Gal-9-mediated expansion of HIV reservoirs is specific to myeloid cells. 
Gal-9 expands and activates myeloid cells [5-9]; these effects might lead to HIV reactivation and 
ongoing replication in this cell population, which may explain our results. Furthermore, Gal-9 can 
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impact many aspects of immune responses relevant to persistence. For example, Gal-9 exhibits 
several immunosuppressive activities [22-30], including the ability to increase the function of 
regulatory T cells (T-regs)[30] and impair natural killer (NK) cells’ cytotoxicity [31]. The potential 
link between Gal-9-mediated impact on immune activation and functions, relevant to HIV 
persistence, warrants a broader investigation.  

Endogenous Gal-9 is highly abundant in vivo, especially during HIV infection[10], and its sustained 
levels have been associated, during ART-suppressed HIV infection, with the state of chronic 
inflammation and immune activation central to the development of several HIV-associated co-
morbidities [32-39]. Therefore, clarifying the mechanistic underpinnings of the overall adverse 
effects of elevated Gal-9 during ART-suppressed HIV infection may lead to the development of 
interventions to target Gal-9 (such as anti-Gal-9 antibodies and small molecule inhibitors targeting 
Gal-9 [40-42]) to improve immune functionality, reduce inflammation-associated co-morbidities, 
and reduce levels of HIV persistence, in the setting of viral suppression by ART.  
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Figure 1. Gal-9 treatment is tolerable in vivo but increases levels of tissue-associated HIV 
DNA and RNA during ART-suppressed HIV infection. (A) a schematic overview of the study 
design. (B) percentage of human CD45+, CD3+CD45+, CD4+CD3+CD45+ cells measured in the 
peripheral blood of BLT mice at day -7 (n=14). Unpaired T tests. Mean and standard error of mean 
(SEM) are displayed. (C) mice weight over time in both cohorts. (D) plasma viral load over time 
in both cohorts (n=14). (E) Gal-9 treatment-induced levels of tissue-associated HIV DNA and HIV 
RNA (measured by qPCR) than controls in both cohorts. Data shown are only from tissues with 
detectable levels of cell-associated HIV DNA or RNA. Unpaired T tests. Mean and SEM are 
displayed. (F) immunohistochemistry and quantitative image analysis of CD4+ T and myeloid cells 
in the liver and spleen of both cohorts (n=14). Unpaired T tests. Mean and SEM are displayed. (G) 
Top: representative example of myeloid (blue) and CD4+ T (green) cells harboring HIV RNA (red) 

using RNAscope in paraformaldehyde (PFA) fixed liver tissues. Scale bar=100m. Bottom: levels 
of HIV RNA+ CD4+ T or myeloid cells in the liver and spleen of mice from cohort II (n=6). 
Unpaired T tests. Mean and SEM are displayed. 
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Figure 2. Gal-9 treatment does not significantly induce markers of inflammation of T cell 
activation. (A-B) impact of Gal-9 treatment on markers of CD4+ and CD8+ T cell activation (co-
expression of CD38 and HLA-DR activation markers) and exhaustion (PD-1 expression) measured 
by flow cytometry in the blood (A; n=14) and spleen (B; n=8). Unpaired t-tests. The mean and 
standard mean of error (SEM) are displayed. (C) Impact of Gal-9 treatment on plasma levels of 
markers of systemic inflammation measured by multiplex arrays (n=8). Unpaired t-tests. The mean 
and standard mean of error (SEM) are displayed. 
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