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ABSTRACT The HIV-1 Nef and Vpu accessory proteins are known to protect infected
cells from antibody-dependent cellular cytotoxicity (ADCC) responses by limiting expo-
sure of CD4-induced (CD4i) envelope (Env) epitopes at the cell surface. Although both
proteins target the host receptor CD4 for degradation, the extent of their functional re-
dundancy is unknown. Here, we developed an intracellular staining technique that per-
mits the intracellular detection of both Nef and Vpu in primary CD41 T cells by flow
cytometry. Using this method, we show that the combined expression of Nef and Vpu
predicts the susceptibility of HIV-1-infected primary CD41 T cells to ADCC by HIV1
plasma. We also show that Vpu cannot compensate for the absence of Nef, thus provid-
ing an explanation for why some infectious molecular clones that carry a LucR reporter
gene upstream of Nef render infected cells more susceptible to ADCC responses. Our
method thus represents a new tool to dissect the biological activity of Nef and Vpu in
the context of other host and viral proteins within single infected CD41 T cells.

IMPORTANCE HIV-1 Nef and Vpu exert several biological functions that are important
for viral immune evasion, release, and replication. Here, we developed a new
method allowing simultaneous detection of these accessory proteins in their native
form together with some of their cellular substrates. This allowed us to show that
Vpu cannot compensate for the lack of a functional Nef, which has implications for
studies that use Nef-defective viruses to study ADCC responses.

KEYWORDS HIV-1, Env, Nef, Vpu, CD4, BST-2, ADCC, CD4-bound conformation,
LucR.T2A, nonneutralizing antibodies

The human immunodeficiency virus type 1 (HIV-1) genome encodes four accessory
proteins (Vif, Vpr, Vpu, and Nef), which are dispensable for viral replication in vitro

but required for efficient replication, restriction factor counteraction, and immune eva-
sion in vivo (1–7). Among them, Nef and Vpu are well known for their role in subverting
the host cell protein trafficking machinery (8, 9).

HIV-1 Nef is a small cytoplasmic protein of 27 kDa produced from early viral tran-
scripts (10) which requires a myristoyl group on its N terminus to traffic to intracellular
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and plasma membranes (11). Nef harbors a highly conserved dileucine motif in its C-
terminal flexible loop that is responsible for the interaction with clathrin adaptor pro-
tein complexes (AP-1, AP-2, and AP-3) (12). Among these, interaction with AP-2 is
required to downregulate the CD4 receptor from the surface of infected cells (13, 14)
and target it for degradation in lysosomal compartments (15, 16).

HIV-1 Vpu is a small type I transmembrane protein of 16 kDa produced late in the
viral replication cycle (17, 18) and contains a short luminal N-terminal peptide followed
by a single helical transmembrane domain and a C-terminal cytoplasmic domain (19–
21). The cytoplasmic domain comprises two a-helices linked by a flexible loop known
for its interaction with the SCFbTRCP E3 ubiquitin ligase complex via a conserved phos-
phoserine motif (DSPGNESP) (22, 23). Vpu mainly localizes within intracellular compart-
ments, notably, the endoplasmic reticulum (ER) and the trans-Golgi network (TGN)
(24–26). Like Nef, Vpu also induces degradation of newly synthesized CD4 by directing
it through an ER-associated pathway (ERAD) for further proteasomal degradation (22,
27–29). In addition, Vpu sequesters the restriction factor BST-2 in the TGN using its
transmembrane domain and thereby increasing the release of progeny virions (30–33).

CD4 downregulation by Nef and Vpu was previously reported to be critical for effi-
cient viral replication in T cells by enhancing virion release and infectivity and by pre-
venting superinfection (34–39). CD4 downregulation is critical for immune evasion
since the anti-Env antibody (Ab) response is dominated by nonneutralizing antibodies
(nnAbs) that target Env in its “open” CD4-bound conformation (40–42). The interaction
between CD4 and Env at the surface of HIV-1-infected cells has been shown to pro-
mote nnAbs binding to Env, leading to the elimination of infected cells through Fc-
mediated effector functions, including antibody-dependent cellular cytotoxicity
(ADCC) and complement-dependent cytotoxicity (41, 43, 44). Nef and Vpu limit the
presence of Env-CD4 complexes at the cell surface and thus protect infected cells
against ADCC (41, 43, 45).

In previous studies, Nef and Vpu expression was mostly examined in transfected
cell lines, frequently using tagged proteins (30, 31, 46, 47) or by performing Western
blot analysis and immunofluorescence microscopy in infected primary cells (48–53).
However, both proteins are small, intracellularly located, and present in small amounts,
rendering their detection difficult. To facilitate their analysis in primary CD41 T cells,
we developed an intracellular staining technique to detect Nef and Vpu expression by
flow cytometry, which allows the simultaneous detection of these proteins together
with host and viral proteins within a single infected cell. Using this method, we show
that Nef and Vpu expression predicts the susceptibility of HIV-1-infected primary CD41

T cells to ADCC by HIV1 plasma. We also explain why decreased Nef expression in
widely used reporter viruses increases the susceptibility of infected cells to ADCC
responses.

RESULTS
Intracellular detection of Nef and Vpu in HIV-1-infected primary CD4+ T cells.

To facilitate detection of intracellular Nef, we obtained a polyclonal Nef antiserum
through the NIH AIDS Reagent Program, which was generated by immunization of rab-
bits with a recombinant clade B Nef consensus protein produced in Escherichia coli
(54). In previous studies, this antibody detected native Nef proteins by Western blot-
ting and immunofluorescence microscopy in both transfected and infected cells (48,
55–57). Given the scarcity of anti-Vpu antibodies, we immunized rabbits with a peptide
corresponding to the clade B Vpu C-terminal region (residues 69 to 81). A similar
approach was previously used to generate a polyclonal antibody capable of detecting
Vpu by Western blotting and immunofluorescence microscopy (24, 58).

We first evaluated the ability of both Nef and Vpu antisera to recognize their cog-
nate antigen using HEK 293T cells transfected with plasmids expressing the Nef or Vpu
proteins from the transmitted/founder (T/F) virus CH058 (59, 60). Cells were permeabil-
ized and stained with the antisera 48 h posttransfection, followed by detection with a
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fluorescently labeled anti-rabbit secondary antibody. As expected, the Nef antiserum
recognized only Nef transfected cells, while the Vpu antiserum recognized only Vpu
transfected cells (Fig. 1A to C). To evaluate whether our method detected Nef and Vpu
when expressed in a biologically relevant culture system, we infected primary CD41 T
cells with CH058 infectious molecular clones (IMC) encoding Nef and/or Vpu proteins.
While wild-type (WT)-infected cells were efficiently recognized by both Nef and Vpu
antisera, abrogation of Nef (Fig. 1D and E) or Vpu (Fig. 1F and G) expression prevented
the recognition of productively infected cells as identified by Gag protein intracellular
staining (p241). Of note, mock-infected or uninfected bystander cells (p24–) were not
detected by either antiserum, further confirming their specificity (Fig. 1D to G).

We next examined the antiserum binding to Nef and Vpu proteins from different
HIV-1 clades and groups as well as from closely related simian immunodeficiency
viruses (SIV). Primary CD41 T cells were infected with a panel of HIV-1 IMCs represent-
ing clades B, C, A1, and CRF01_AE. As expected, both Nef and Vpu antisera recognized
their respective antigen in cells infected with clade B viruses since both were raised
against clade B immunogens (Fig. 1H and I). The anti-Nef polyclonal antibody was also
able to recognize Nef proteins from group M clades C, A1, and CRF01_AE as well as the
Nef from a group O isolate. This recognition extended even to the Nef protein of a
related SIVcpzPts strain (isolate TAN2) but not to chimeric simian-human immunodefi-
ciency viruses (SHIV) which express an SIVmac Nef (Fig. 1H). The Vpu antiserum was
less cross-reactive and failed to detect Vpu from clade C viruses (Fig. 1I). These findings
confirmed the specificity and cross-reactivity of the intracellular detection of Nef and
Vpu using infected primary CD41 T cells.

Measuring CD4 and BST-2 downregulation in infected primary CD4+ T cells
with or without Nef and Vpu expression. The efficient detection of Nef and Vpu at
the single cell level by flow cytometry allowed us to combine this approach with the
quantification of CD4 and BST-2 expression levels on the cell surface. Productively
infected cells (p241) expressing both Nef and Vpu had little detectable CD4 and BST-2
compared to uninfected cells (Fig. 2A). In contrast, cells infected with Vpu- or Nef-de-
fective viruses differed in the extent of CD4 and BST-2 downregulation (Fig. 2A).

Vpu targets CD4 and BST-2 by different mechanisms. First, Vpu interacts with multi-
ple transmembrane proteins, including BST-2, through its transmembrane domain
(TMD), which sequesters these proteins in perinuclear compartments (32, 33, 61–64).
Second, Vpu downregulates CD4 by interaction of its cytoplasmic domain with the
cytoplasmic tail of CD4 (65–70). Consistent with these different interaction modes,
Vpu-mediated CD4 and BST-2 degradation involves independent pathways (proteaso-
mal and lysosomal degradation, respectively), both of which depend on polyubiquiti-
nation by the SCFbTRCP E3 ubiquitin ligase complex, recruited by Vpu using its highly
conserved phosphoserine motif (22, 26, 71, 72). To examine whether we could measure
the expression and activity of Vpu mutants by flow cytometry, we introduced muta-
tions at critical residues of the Vpu TMD (A14L/A18L) or its phosphoserine motif (S52A/
S56A). CH058 IMCs coding for wild-type or mutated Vpu proteins were used to infect
primary CD41 T cells. While the TMD mutations did not affect Vpu expression, the
phosphoserine mutations led to a significant accumulation of intracellular Vpu proteins
(Fig. 2B), most likely because Vpu is degraded together with its target protein as a
ubiquitinated complex (24, 73, 74). Despite a higher expression level, the Vpu phos-
phoserine mutant was unable to downregulate CD4 and was marginally diminished in
its capacity to antagonize BST-2 (Fig. 2C to F). This is consistent with studies demon-
strating that the recruitment of the SCFbTRCP E3 ubiquitin ligase complex and the deg-
radation of BST-2 by Vpu is dissociable from its capacity to antagonize the restriction
factor (32, 72, 75–77). In contrast, the Vpu TMD mutations did not affect Vpu’s ability to
target CD4 but completely abrogated its capacity to downregulate BST-2 (Fig. 2C to F).
Together, these results emphasize the need for measuring Nef and Vpu expression
when studying their biological functions.

Nef and Vpu expression inversely correlates with ADCC responses. CD4 down-
regulation by Nef and Vpu together with Vpu-mediated BST-2 antagonism were found to
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FIG 1 Intracellular detection of Nef and Vpu in infected primary CD41 T cells. (A to C) 293T cells transfected with an empty vector or a plasmid expressing
either CH058 Nef or CH058 Vpu. Cells were permeabilized 48 h posttransfection and stained with rabbit polyclonal antisera raised against Nef and Vpu to
detect their respective intracellular expression. Antiserum binding was detected using donkey anti-rabbit BV421 secondary Abs. (A) Histograms depicting
representative staining and (B and C) median fluorescence intensities (MFI) obtained for multiple independent stainings using (B) anti-Nef or (C) anti-Vpu.
(D to G) Primary CD41 T cells mock-infected or infected with CH058 T/F WT, Nef–, or Vpu–, were stained to detect the intracellular expression of Nef or
Vpu. (D and F) Dot plots (left) and histograms (right) depicting representative (D) Nef and (F) Vpu staining. (E and G) The graphs show the MFI obtained
from different cell populations using cells from five different donors using (E) anti-Nef or (G) anti-Vpu. Error bars indicate means 6 standard errors of the

(Continued on next page)
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be critical factors preventing the exposure of vulnerable CD4-induced Env epitopes, thus
protecting HIV-1-infected cells from ADCC (41, 43, 45, 78–81). To investigate the link
between Nef and Vpu expression and HIV-1-infected cell immune evasion, we infected
activated primary CD41 T cells from five HIV-negative individuals with two clade B IMCs,

FIG 2 Concomitant detection of intracellular Nef and Vpu and cell-surface CD4 and BST-2. Primary CD41 T cells infected with CH058 T/F WT, Nef–, Vpu–,
Vpu A14L/A18L, or Vpu S52A/S56A viruses were stained for cell-surface CD4 and BST-2 prior to detection of intracellular Nef or Vpu expression. (A, C, and
E) Contour plots depicting representative cell-surface CD4 or BST-2 detection in combination with Nef or Vpu intracellular detection. Mock-infected cells
were used as a control and are shown in gray. (B, D, and F) The graphs show the results obtained from five independent experiments. CD4 and BST-2
levels were reported as a percentage of detection at the surface of infected p241 cells compared to uninfected p24– cells. Error bars indicate means 6
standard errors of the means (SEM). Statistical significance was tested using an unpaired t test or a Mann-Whitney U test based on statistical normality (*,
P , 0.05; **, P , 0.01; ***, P , 0.001; ns, nonsignificant).

FIG 1 Legend (Continued)
means (SEM). Statistical significance was tested using an unpaired t test or a Mann-Whitney U test based on statistical normality (*, P , 0.05; **, P , 0.01;
***, P , 0.001; ns, nonsignificant). (H and I) Primary CD41 T cells were infected with a panel of viruses from different clades (A1, B, C, CRF01_AE), groups
(M, O), and hosts (HIV-1, SIVcpz, SHIV). The radar plots indicate the level of specific recognition of infected cells (MFI normalized to uninfected cells) using
the (H) anti-Nef or (I) anti-Vpu antisera. The limit of detection was determined using (H) cells infected with CH058 Nef– for Nef staining and using (I) cells
infected with CH058 Vpu– for Vpu staining.
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CH058 T/F and JR-FL, encoding functional or defective nef and vpu genes. Focusing on the
productively infected cells (p241), we performed a comprehensive characterization of the
patterns of viral protein expression, including cell-surface Env (detected with the confor-
mation-independent Ab 2G12), intracellular Nef, and Vpu in combination with cell-surface
levels of CD4 and BST-2. We also measured the specific recognition and elimination of
infected cells by ADCC using the CD4-induced (CD4i) A32 monoclonal Ab (MAb). This anti-
body binds the cluster A region of the gp120, which is occluded in the “closed” trimer and
therefore can only bind Env in the “open” CD4-bound conformation. We also tested 25 dif-
ferent plasma samples from chronically HIV-1-infected individuals. As expected, Nef was
only expressed by WT and Vpu– constructs, while Vpu was only expressed by WT and
Nef– constructs (Fig. 3A). Consistent with previous reports (43, 78, 79), deletion of Nef
strongly impaired CD4 downregulation by both viruses but did not affect Env or BST-2
cell-surface levels. Vpu deletion mitigated CD4 downregulation to a lesser extent than Nef
and abrogated BST-2 downmodulation, resulting in an overall increase in the amount of
cell-surface Env (Fig. 3B). The cumulative effect of Nef and Vpu on cell-surface levels of
Env, CD4, and BST-2 prevented the recognition of infected cells and protected them from
ADCC responses mediated by A32 and HIV1 plasma (Fig. 3C and D). In contrast, abroga-
tion of Nef or Vpu expression resulted in increased recognition and susceptibility of
infected cells to ADCC mediated by nnAbs (Fig. 3C and D). We performed correlation anal-
yses to measure the level of association between the different cellular, virological, and
immunological variables (Fig. 3E and F). We found that both Nef and Vpu established a
large network of inverse correlations with cellular and immunological factors. Interestingly,
Env levels hardly contributed to the network and were poorly associated with the immu-
nological outcome, thus indicating that the overall amount of Env present at the surface
does not dictate ADCC responses mediated by CD4i Abs or HIV1 plasma but, rather, the
conformation Env occupies. Apart from antibody binding, ADCC responses mediated by
nnAbs correlated strongly with CD4 and Nef levels (Fig. 3E and F). Overall, Nef and Vpu
expression inversely correlates with the susceptibility of HIV-1-infected cells to ADCC medi-
ated by CD4i Abs and HIV1 plasma.

Impaired Nef expression from IMC LucR.T2A constructs enhance the susceptibility
of infected cells to ADCC. Infectious molecular clones encoding the Renilla luciferase
(LucR) reporter gene upstream of the nef sequence and a T2A ribosome-skipping pep-
tide to drive Nef expression are widely employed to quantify anti-HIV-1 ADCC responses
(82–95). Despite evidence that Nef-mediated CD4 downregulation is impaired when
using these IMCs (55, 80), a series of recent studies have hypothesized that Vpu can com-
pensate for the absence of Nef expression and completely downregulate CD4 on its own
(96–100). To evaluate this hypothesis, we used our intracellular staining to measure Nef
and Vpu expression levels and study their impact on ADCC responses mediated by
nnAbs against cells infected with IMC-LucR.T2A constructs. Primary CD41 T cells were
infected with NL4.3-based IMCs that do (Env-IMC-LucR.T2A) or do not encode (Env-IMC)
a LucR.T2A cassette. These IMCs express the Env ectodomain from two clade B viruses,
CH058 T/F and YU-2. Consistent with the lack of Nef detection by Western blotting (55,
80), insertion of the LucR.T2A cassette also impaired the detection of Nef by flow cytom-
etry, while Vpu expression remained unchanged (Fig. 4A and B). However, we noted an
accumulation of cell-surface CD4 for Env-IMC-LucR.T2A compared to nef-intact con-
structs (;20-fold higher) (Fig. 4C), which resulted in a significantly increased recognition
and susceptibility of infected cells to ADCC responses mediated by A32 MAb and HIV1
plasma (Fig. 4D and E). Of note, both the binding and the ADCC responses mediated by
nnAbs were strongly associated with CD4 levels and inversely correlated with Nef
expression (Fig. 4F and G). In contrast, these variables were poorly correlated with Vpu
expression. Based on these data, it seems clear that Vpu expression alone is not sufficient
to prevent ADCC-mediated killing of infected cells and that HIV-1 requires both Nef and
Vpu for efficient humoral response evasion.

Nef, Vpu, and CD4 levels predict ADCC responses mediated by HIV+ plasma. We
next used univariate multiple linear regression (MLR) analysis to evaluate the capacity
of different variables to predict ADCC responses mediated by HIV1 plasma. This model
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FIG 3 Nef and Vpu intracellular detection inversely correlates with the recognition of infected cells and their susceptibility to ADCC responses mediated by
HIV1 plasma. (A and B) Primary CD41 T cells were mock-infected (gray) or infected with CH058 T/F (red) or JR-FL (blue) viruses (WT, Nef–, Vpu–, Nef– Vpu–),
and stained for (A) intracellular Nef or Vpu expression in combination with (B) cell-surface staining of Env (using the anti-Env 2G12 MAb), CD4, and BST-2.
(C and D) The ability of the anti-Env A32 MAb and 25 different HIV1 plasma samples to (C) recognize infected cells and (D) eliminate infected cells by
ADCC was also measured. (A to D) The graphs show the MFI obtained on the infected (p241) cell population using cells from five different donors. Error
bars indicate means 6 standard errors of the means (SEM). Statistical significance was tested using an unpaired t test or a Mann-Whitney U test based on
statistical normality (*, P , 0.05; **, P , 0.01; ***, P , 0.001; ns, nonsignificant). (E) Correlograms summarize pairwise correlations among all
immunological, virological, and cellular variables obtained from infected primary CD41 T cells (shown in panels A to D). Squares are color-coded according
to the magnitude of the correlation coefficient (r), and the square dimensions are inversely proportional with the P values. Red squares represent a positive

(Continued on next page)
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is based on the hypothesis that a linear relationship exists between the dependent
variable quantified empirically and the independent variables that serve as predictive
variables. In our model, the dependent variable is the ADCC responses mediated by
plasma from HIV1 donors (ADCC HIV1 plasma), and the independent variables are the
cellular, virological, and immunological factors measured on infected cells. To run the
MLR model, we combined data obtained with the different viral constructs (Fig. 3 and
4) and plotted the mean ADCC obtained with 25 HIV1 plasma samples against a single
virus on the x axis and the associated predicted ADCC value based on one or more in-
dependent variables on the y axis. When looking at cellular factors, we noticed that
only CD4 accurately predicts ADCC responses mediated by HIV1 plasma, independent
of the viral strain (Fig. 5A). Even though BST-2 displayed a strong correlation with
ADCC responses (Fig. 3E), it was not predictive. When focusing on virological variables,
we observed that Nef is the only significant ADCC predictive variable, albeit not as
good as CD4 (Fig. 5A and B). However, combinations of Nef with Vpu or Env increased
its predictive scores, reaching similar levels as CD4 when combined with Vpu (Fig. 5B).
Of note, the strength of the prediction was not further improved when combining all
three virological variables altogether. As for immunological variables, their capacity to
predict ADCC by HIV1 plasma was found to be equivalent or even higher than for cel-
lular and virological factors (Fig. 5C). Indeed, the binding of HIV1 plasma predicted
ADCC values with a similar score as CD4 or Nef and Vpu combined, while the binding
of A32 predicted ADCC by HIV1 plasma even better (Fig. 5A to C). This could be
explained by the fact that A32-like Abs present in plasma from infected individuals are
from the main class of Abs (anti-cluster A Abs) mediating ADCC responses against
infected cells (41, 81, 82, 92, 101). In line with this interpretation, ADCC mediated by
A32 was found to have a near-perfect predictive ability, suggesting that factors other
than antibody binding are presumably needed to fully explain the ADCC phenotypes
observed (Fig. 5C).

DISCUSSION

Unlike simple retroviruses, HIV-1 and related SIVs encode multiple accessory pro-
teins that promote viral replication and immune evasion (102). Among them, Nef and
Vpu modulate the expression, trafficking, localization, and function of several host cell
surface proteins, including the viral receptor CD4, restriction factors, and homing
receptors (28, 30, 31, 63, 70, 103–107). They also modulate a wide range of immunore-
ceptors to evade immune responses mediated by CD81 T, NK, and NKT cells (108–116).
Most of these host cell proteins are naturally expressed on primary CD41 T cells, the
preferential target of HIV-1. The detection of Nef and Vpu has previously been done in
transfected cells (30, 31, 47, 49, 50, 117), which results in the overexpression of the viral
proteins compared to infected primary CD41 T cells. Moreover, tagged viral proteins
are frequently used to facilitate their detection (30, 31, 47, 49, 50, 117). Protein overex-
pression and/or tag insertion have the potential to impact the trafficking and functions
of these accessory proteins. To study Nef and Vpu’s biological activities in a physiologi-
cally relevant system, we developed an intracellular staining method to detect native
Nef and Vpu proteins in HIV-1-infected primary CD41 T cells by flow cytometry. Using
Nef and Vpu antisera, we detected both viral proteins with high specificity in cells pro-
ductively infected (p241) with multiple IMCs. The Nef antiserum was cross-reactive,
detecting Nef from group M (clades B, C, A1, and CRF01_AE) from a group O isolate
and from a closely related SIVcpz strain. In contrast, the Vpu antiserum recognized only

FIG 3 Legend (Continued)
correlation between two variables, and blue squares represent negative correlations. Asterisks indicate all statistically significant correlations (*, P , 0.05; **,
P , 0.01; ***, P , 0.005). Correlation analysis was done using nonparametric Spearman rank tests. (F) Correlation networks were generated using data
shown in panel E. Each node (circle) represents a cellular (red), an immunological (green), or a virological (blue) feature measured on infected cells. Nodes
are connected with edges (lines) if they are significantly correlated (P , 0.05); nodes without edges were removed. Edges are weighted according to P
values (inversely). Red edges represent a positive correlation between two variables, and blue edges represent negative correlations. Nodes are sized
according to the r values of connecting edges.
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FIG 4 Lack of Nef expression in primary CD41 T cells infected with LucR.T2A IMC results in enhanced ADCC. Primary CD41 T cells mock-infected (gray) or
infected with chimeric IMCs expressing CH058 Env (red) or YU-2 Env (green) and expressing or not the LucR reporter gene. (A) Dot plots depicting
representative stainings of intracellular Nef or Vpu expression. (B and C) Detection by flow cytometry of (B) intracellular Nef or Vpu expression in
combination with (C) cell-surface staining of Env (using anti-Env MAbs 2G12 (CH058) or PGT135 (YU-2)), CD4, and BST-2. (D and E) The ability of the A32
MAb and 25 HIV1 plasma to (D) recognize infected cells and (E) eliminate infected cells by ADCC was also measured. (B to E) The graphs show the MFI
obtained on the infected (p241) cell population using cells from five different donors. Error bars indicate the means 6 standard errors of the means (SEM).
Statistical significance was tested using an unpaired t test or a Mann-Whitney U test based on statistical normality (*, P , 0.05; **, P , 0.01; ***, P , 0.001;
ns, nonsignificant). (F) Correlograms summarize pairwise correlations among all immunological, virological, and cellular variables obtained from infected
primary CD41 T cells (shown in panels B to E). Squares are color-coded according to the magnitude of the correlation coefficient (r), and the square
dimensions are inversely proportional with the P values. Red squares represent a positive correlation between two variables, and blue squares represent
negative correlations. Asterisks indicate all statistically significant correlations (*, P , 0.05; **, P , 0.01; ***, P , 0.005). Correlation analysis was done using
nonparametric Spearman rank tests. (G) Correlation networks were generated using data shown in panel F. Each node (circle) represents a cellular (red), an
immunological (green), or a virological (blue) feature measured on infected cells. Nodes are connected with edges (lines) if they are significantly correlated
(P , 0.05); nodes without edges were removed. Edges are weighted according to P values (inversely). Red edges represent a positive correlation between
two variables, and blue edges represent negative correlations. Nodes are sized according to the r values of connecting edges.
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FIG 5 Prediction of ADCC responses mediated by HIV1 plasma using multiple linear regression models. Multiple linear regression
analysis to identify variables that can predict the ADCC responses mediated by HIV1 plasma against primary CD41 T cells infected by
different viral constructs (WT, Nef–, Vpu–, Nef-Vpu–, Env-IMC, Env-IMC-LucR.T2A) from different HIV-1 strains (CH058, JR-FL, YU-2). Each
dot represents a single virus where the average of ADCC obtained with 25 different HIV1 plasma samples (dependent variable) is
plotted on the x axis and the predicted ADCC value based on one or more independent parameters is plotted on the y axis. (A to C)
Predictors include (A) cellular variables, (B) virological variables, and (C) immunological variables. Multiple linear regression analyses were
performed using the GraphPad Prism software (v 9.1.0). P values below 0.05 are considered significant and are highlighted in bold. The
coefficient of multiple correlation (R2) indicates the goodness of fit of the multiple regression linear model. The adjusted R2 (Adj. R2) is
used to compare the fits of models across experiments with different numbers of data points and independent variables.
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clade B Vpu proteins, consistent with the fact that we used a peptide from the C-termi-
nal region of clade B Vpu. This region is highly variable among group M viruses (118).
More conserved regions of Vpu map to the transmembrane domain of the protein and
the bTRCP binding site (119, 120). However, these regions are either buried in the
plasma membrane or occluded by cellular partners and thus are not readily accessible
for antibody recognition. While the generation of a broad Vpu antiserum is challeng-
ing, it may be possible to generate clade-specific Vpu antisera by immunization using
peptides corresponding to the C-terminal region specific for a given clade.

Nef and Vpu intracellular detection by flow cytometry represents an excellent tool
to study their biological activities in HIV-1-infected primary CD41 T cells. This method
allows for the detection of cell-surface substrates or antibody recognition of surface
Env and the concomitant detection of Nef and Vpu expression within a single infected
cell (Fig. 2A). Infected CD41 T cells represent the most relevant system to study the
complex interplay between these two accessory proteins and the wide range of host
cell factors naturally expressed by T cells. Recent findings revealed that modulation of
BST-2 levels by type I IFN impacts the capacity of Vpu to downregulate NTB-A, PVR,
CD62L, and Tim-3, thus reducing its polyfunctionality (64, 70). Nef and Vpu also display
overlapping functions, as they share the capacity to downregulate several cell-surface
proteins, including CD4, PVR, CD62L, and CD28 (8, 57, 63, 113, 121). The expression lev-
els of one viral protein could therefore modulate the biological activities of the other,
making it essential to study their functions in a context where both viral proteins are
expressed simultaneously at physiological levels. Thus, our intracellular staining meas-
uring Nef/Vpu expression and functionality in HIV-1-infected cells represents a new
approach to better characterize their functional interplay.

Increasing evidence points toward Env conformation on the surface of infected cells as
a critical parameter of ADCC susceptibility to HIV1 plasma (41, 122–124). Nonneutralizing
antibodies in the plasma from HIV-1-infected individuals target epitopes that are only
exposed when Env interacts with cell-surface CD4, thus adopting the open CD4-bound
conformation (41, 43). Nef and Vpu contribute to protect HIV-1-infected cells from ADCC
by limiting Env-CD4 interaction via CD4 downregulation and BST-2 antagonism (41, 43, 45,
78, 79). Here, we confirm and extend previous observations by showing that Nef and Vpu
expression predicts the susceptibility of HIV-1-infected primary CD41 T cells to ADCC
responses. In agreement with recent studies (45, 80), we found that CD4 accurately pre-
dicted the susceptibility of infected cells to ADCC (Fig. 5). Given its enhanced capacity to
downregulate CD4 compared to Env or Vpu (34, 41, 43, 121), Nef represents the main viral
factor influencing ADCC responses mediated by CD4-induced ligands (Fig. 5B). On the con-
trary, BST-2 and Env expression, alone or in combination, were unable to accurately predict
the susceptibility of infected cells to ADCC. These results are consistent with previous
reports suggesting that Env conformation and CD4 reactivity, rather than overall cell-sur-
face Env levels, drive ADCC responses mediated by HIV1 plasma (41, 43, 123–125). This is
also in agreement with recent work showing that BST-2 upregulation by type I IFN enhan-
ces cell-surface Env levels without increasing the susceptibility of infected cells to ADCC
mediated by HIV1 plasma, unless CD4-mimetics are used to “open-up” Env and stabilize
the CD4-bound conformation (126).

A series of recent studies using LucR.T2A IMCs have hypothesized that Vpu can
compensate for the absence of Nef expression by fully downregulating cell-surface
CD4 (96–100). Our results show that this is not the case. Consistent with its role in tar-
geting CD4 already present at the plasma membrane, the impact of Nef on CD4 down-
modulation is more prominent (Fig. 2 and 3) (34, 41, 43, 121). In its absence, Vpu was
unable to fully downregulate CD4, thus sensitizing infected cells to ADCC responses.
These results highlight the importance of selecting full-length unmutated IMCs with
proper Nef and Vpu expression to generate biologically relevant ADCC measurements.
For example, a recent manuscript recently reported no differences in ADCC susceptibility
between cells infected with clade B, clade C, or CRF01_AE IMCs (127), while previous
studies have shown otherwise (123, 128). In this article (127), the authors use functionally
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Nef-defective LucR.T2A IMCs, which results in incomplete CD4 downregulation and there-
fore exposure of Env in its CD4-bound conformation at the cell surface (Fig. 4) (80). Thus, it is
not surprising that the usage of Nef-defective viruses skews ADCC responses in favor of
nnAbs and mitigates the intrinsic differences that exist between Env from different clades.
Fortunately, several alternatives to the use of LucR.T2A IMCs are available to measure ADCC
against productively infected cells (129), including the infected cell elimination (ICE) assay,
which measures the loss of productively infected cells (p241) by flow cytometry and allows
the utilization of unmodified IMCs. Utilization of an NK cell-resistant T cell line expressing a
Tat-driven luciferase reporter gene (CEM.NKr-CCR5-sLTR-Luc) as target cells also represents
an option (130). Finally, luciferase reporter IMCs (referred to as LucR.6ATRi IMCs) expressing
similar levels of Nef as those obtained with unmodified IMCs are also available. These IMCs
utilize a modified encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) ele-
ment in lieu of T2A (55, 80). Thus, LucR.6ATRi reporter viruses represent a biologically rele-
vant alternative to LucR.T2A IMCs when measuring ADCC mediated by nnAbs and plasma
collected from infected or vaccinated individuals.

MATERIALS ANDMETHODS
Ethics statement. Written informed consent was obtained from all study participants (the Montreal

Primary HIV Infection Cohort [131, 132] and the Canadian Cohort of HIV Infected Slow Progressors [133–
135]), and research adhered to the ethical guidelines of CRCHUM and was reviewed and approved by
the CRCHUM institutional review board (ethics committee, approval number CE 16.164-CA). Research adhered
to the standards indicated by the Declaration of Helsinki. All participants were adults and provided informed
written consent prior to enrollment, in accordance with institutional review board approval.

Cell lines and isolation of primary cells. HEK293T human embryonic kidney cells (obtained from
ATCC) were grown as previously described (136). Primary human peripheral blood mononuclear cells
(PBMCs) and CD41 T cells were isolated, activated, and cultured as previously described (43). Briefly,
PBMCs were obtained by leukapheresis from HIV-negative individuals (4 males and 1 female), and CD41

T lymphocytes were purified from resting PBMCs by negative selection using immunomagnetic beads
per the manufacturer’s instructions (StemCell Technologies, Vancouver, BC) and were activated with
phytohemagglutinin-L (10 mg/mL) for 48 h and then maintained in RPMI 1640 complete medium sup-
plemented with rIL-2 (100 U/mL).

Plasmids and proviral constructs. The vesicular stomatitis virus G (VSV-G)-encoding plasmid was
previously described (137). Transmitted/founder (T/F) and chronic infectious molecular clones (IMCs) of
patients CH040, CH058, CH077, CH131, CH141, CH167, CH185, CH198, CH236, CH269, CH293, CH440,
CH470, CH505, CH534, CH850, CM235, MCST, REJO, RHGA, RHPA, STCO, SUMA, TRJO, WARO, WITO, WR27,
40061, 703357, and 851891 were inferred, constructed, and biologically characterized as previously
described (123, 138–147). The IMCs encoding HIV-1 reference strains AD8, JR-FL, JR-CSF, NL4-3, and YU-2
were described elsewhere (148–153). HIV-1 group O (RBF206), SIVcpz (TAN2), and chimeric SIVmac/HIV-1
IMC constructs (SHIVAD8-EO and SHIV.AE.40100) were generated as previously published (154–157). CH058
IMCs defective for Vpu and/or Nef expression were previously described (59). To generate a nef-defective
JR-FL IMC, a frameshift mutation was introduced at the unique XhoI restriction site within the nef gene,
resulting in a premature stop codon at position 47. To generate vpu-defective JR-FL IMCs, two stop-codons
were introduced directly after the start-codon of vpu using the QuikChange II XL site-directed mutagenesis
protocol (Agilent Technologies, Santa Clara, CA). The presence of the desired mutations was determined
by automated DNA sequencing. Proviral constructs, collectively referred to as Env-IMCs, comprising an
HIV-1 NL4.3-based isogenic backbone engineered for the insertion of heterologous env strain sequences
and expression in cis of full-length Env (pNL.CH058.ecto and pNL.YU-2.ecto), were previously described
(48). In the same study, isogenic proviral constructs encoding Renilla luciferase (LucR) followed in-frame by
a ribosome-skipping T2A peptide intended to drive Nef expression were also reported (collectively referred
to as Env-IMC-LucR.T2A) (48). Construction of plasmids encoding CH058 Vpu and CH058 Nef in the
pCGCG-IRES-eGFP expression vector was previously described (59, 60).

Viral production and infections. To achieve a similar level of infection in primary CD41 T cells
among the different IMCs tested, VSV-G-pseudotyped HIV-1 viruses were produced and titrated as previ-
ously described (123). Viruses were then used to infect activated primary CD41 T cells from healthy HIV-
1-negative donors by spin infection at 800 � g for 1 h in 96-well plates at 25°C.

Antibodies and plasma. The following Abs were used to assess cell-surface Env staining: A32, 2G12
(NIH AIDS Reagent Program), and PGT135 (IAVI). Mouse anti-human CD4 (clone OKT4; Thermo Fisher
Scientific, Waltham, MA, USA) and mouse anti-human BST-2 (clone RS38E, PE-Cy7-conjugated; BioLegend,
San Diego, CA, USA) were also used as primary antibodies for cell-surface staining. Goat anti-mouse and
anti-human antibodies precoupled to Alexa Fluor 647 (Invitrogen, Rockford, IL, USA) were used as second-
ary antibodies in flow cytometry experiments. Plasma from HIV-infected individuals was collected, heat-
inactivated, and conserved at 280°C until use. Rabbit antisera raised against a Nef consensus protein (NIH
AIDS Reagent Program) or against a Vpu C-terminal peptide (70) were used as primary antibodies in intra-
cellular staining. Brilliant Violet 421 (BV421)-conjugated donkey anti-rabbit antibodies (BioLegend) were
used as secondary antibodies to detect Nef and Vpu antisera binding by flow cytometry. To avoid any
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potential cross-reactivity with the anti-rabbit secondary antibodies used for intracellular staining, mouse
monoclonal antibodies were used to detect CD4 and BST-2 proteins.

Flow cytometry analysis of cell-surface and intracellular staining. Cell-surface staining of infected
cells was performed as previously described (41). Binding of cell-surface HIV-1 Env by anti-Env MAbs
(5 mg/mL) or HIV1 plasma (1:1,000 dilution) was performed at 48 h postinfection. Infected cells were then
permeabilized using the Cytofix/Cytoperm fixation/permeabilization kit (BD Biosciences, Mississauga, ON,
Canada) and stained intracellularly using phycoerythrin (PE)-conjugated mouse anti-p24 MAb (clone KC57;
Beckman Coulter, Brea, CA, USA; 1:100 dilution) in combination with Nef or Vpu rabbit antisera (1:1,000
dilution). The percentage of infected cells (p241) was determined by gating on the living cell population
according to viability dye staining (Aqua Vivid; Thermo Fisher Scientific). Alternatively, intracellular staining
was assessed on 293T expressing Nef or Vpu proteins. Briefly, 2 � 106 293T cells were transfected with
7 mg of Nef or Vpu expressor with the calcium-phosphate method. At 48 h posttransfection, 293T cells were
stained intracellularly with rabbit antisera raised against Nef or Vpu (1:1,000). Samples were acquired on an LSR II
cytometer (BD Biosciences), and data analysis was performed using FlowJo v10.5.3 (Tree Star, Ashland, OR, USA).

FACS-based ADCC assay. Measurement of ADCC using the fluorescence-activated cell sorter
(FACS)-based assay was performed at 48 h postinfection as previously described (43, 122). Briefly, HIV-1-
infected primary CD41 T cells were stained with Aqua Vivid viability dye and cell proliferation dye eFluor
670 (Thermo Fisher Scientific) and used as target cells. Autologous PBMC effector cells, stained with cell
proliferation dye eFluor 450 (Thermo Fisher Scientific), were added at an effector:target ratio of 10:1 in
96-well V-bottom plates (Corning, Corning, NY). A 1:1,000 final dilution of plasma or 5 mg/mL of A32
MAb was added to the appropriate wells, and cells were incubated for 5 min at room temperature. The
plates were subsequently centrifuged for 1 min at 300 � g and incubated at 37°C, 5% CO2, for 5 h before
being fixed in a 2% phosphate-buffered saline (PBS)-formaldehyde solution. Samples were acquired on
an LSR II cytometer (BD Biosciences), and data analysis was performed using FlowJo v10.5.3 (Tree Star).
The percentage of ADCC was calculated with the following formula: (% of p241 cells in targets plus
effectors) 2 (% of p241 cells in targets plus effectors plus plasma)/(% of p241 cells in targets) by gating
on infected live target cells. Negative ADCC values can be observed when uninfected p241 cells are
eliminated in a larger proportion than infected p241 cells as previously reported (158, 159).

Software scripts and visualization. Correlograms were generated using the corrplot package in R
v4.1.012 and RStudio v1.4.1106 (160, 161). Correlation networks were created using the ggraph and
igraph packages in R in undirected mode, clustered based on the igraph layout “star.” Edges are
weighted according to P values (inversely). Edges are only shown if P is ,0.05, and nodes without edges
were removed. Nodes are sized according to the r values of connecting edges. Multiple linear regression
analyses were performed using GraphPad Prism software (v9.1.0). The coefficient of determination (R2)
was used as a metric to measure the proportion of the variation observed with the dependent variable that
can be explained by the variation in the independent variables. Since R2 values usually increase when more
predictive variables are added to the model, we also measured the adjusted R2 (adj. R2) to account for this ca-
veat. Individual values for each virus and every parameter were used to generate the correlograms and correla-
tion networks, while multiple linear regression analyses were performed using mean values.

Statistical analysis. Statistics were analyzed using Prism v9.1.0 (GraphPad, San Diego, CA, USA).
Every data set was tested for statistical normality, and this information was used to apply the appropri-
ate (parametric or nonparametric) statistical test. P values of ,0.05 were considered significant; signifi-
cance values are indicated as *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001.

Data availability. Data and reagents are available upon request.
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