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a b s t r a c t 
Pediatric and adult papillary thyroid cancer (PTC) share many similar oncogenic drivers, but differ in the 
pathological features and outcomes of the disease. The most frequent genetic alterations in adult PTCs 
are mutually exclusive point mutations in BRAF or the RAS family. In pediatric PTC, fusion oncogenes 
involving chromosomal translocations in tyrosine kinase (TK) receptors, most commonly RET and NTRK , 
are the most common genetic alterations observed. This review of the literature describes the current 
state of translational research in pediatric NTRK-driven thyroid cancer and highlights opportunities to 
improve our understanding and current models of pediatric PTC. 

© 2022 Published by Elsevier Inc. 

Introduction 
Receptor tyrosine kinases (RTK), such as NTRK, are essential 

mediators in transducing signals to regulate biological functions in- 
cluding survival, proliferation, and cell differentiation. Their com- 
mon structures consist of an extracellular ligand binding domain, 
a transmembrane region, and an intracellular kinase domain. In 
physiological conditions, their activation upon ligand binding leads 
to the homodimerization of the receptors and phosphorylation of 
the downstream signaling cascades. Depending on the phosphory- 
lation site, different pathways such as RAS/MAPK, PI3K/AKT and 
JAK/STAT can be activated. However, in the case of the chromo- 
somal rearrangements, either a 3’kinase fusion (the C-terminal do- 
main of any RTK gene is combined with the N-terminus of a part- 
ner gene) or a 5’kinase fusion (N-terminal domain of the RTK is 
combined with the C-terminal of a fusion partner gene) generate 
a chimeric kinase that becomes constitutively active [1] . This gain 
of intrinsic kinase activity could be the consequence of several dif- 
ferent mechanisms: (i) the fusion kinase expression is controlled 
by the promoter of the partner gene, (ii) the partner gene provides 
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the dimerization domain such as coiled coil, helix-loop-helix, WD 
repeats or zinc finger domain leading ligand-independent activa- 
tion in the fusion kinase or (iii) the novel fusion kinase loses its 
autoinhibitory domain. In addition, the fusion protein could have 
altered intracellular localization due to conformational changes or 
it can display new structural binding regions that enhances MAPK 
and or PI3K/AKT activation [2] . 

In the physiological state, TRK receptors are activated by neu- 
rotrophins. Signaling and interaction is specific to the TRK receptor 
and neurotrophin (reviewed in [3] ). This enables tissue and sig- 
naling specificity based on the available receptors and ligands. Ac- 
tivation of TRKA (NTRK1) with nerve growth factor (NGF) leads 
to the docking of cytoplasmic proteins to activate the RAS/MAPK 
pathway. Conversely, activation of TRKB (NTRK2) via neurotrophic 
binding can result in RAS/MAPK pathway activation in addition to 
PI3K and PLCgamma pathway activation. Neurotrophin 3 binding 
to TRKC (NTRK3) preferentially activates PI3K/AKT signaling. These 
pathways are well mapped and understood in neuronal develop- 
ment and maturation, but the specificity of NTRKs with fusion 
partners and how this preferentially leads to pathway activation 
in tumors is not well known. ( Fig. 1 ) 

Comprehensive genomic studies are continually revealing novel 
fusion partners in thyroid cancer and other tumor types, as well 
a tissue tropism for these fusions [4] . For example, NTRK fusions 
detected in pediatric thyroid tumors predominantly involve NTRK1 
and NTRK3, whereas central nervous system tumors primarily have 
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Fig. 1. NTRK fusions identified in thyroid cancer. trk fusion receptors lead to constitutive activation of signaling pathways such as Ras, phosphatidylinositol-3-kinase (PI3K) 
and phospholipase C (PLC)-y pathways. Created with BioRender.com 
fusions associated with NTRK2 [4] . Whether this tropism is present 
throughout pediatric and adult tumors has not yet been delineated. 
It is also not yet clear whether expression of these fusions in dif- 
ferent cells will respond differently to NTRK inhibitors. 

Many genetic mutations, primarily activating the MAPK path- 
way, have been identified in pediatric thyroid cancer [4–7] . The 
molecular and biochemical responses triggered by NTRK-fusion 
gene expression confer distinctive clinical presentations for pedi- 
atric thyroid cancer patients which include lymphovascular perme- 
ation, extrathyroidal extension, regional lymph node invasion and 
distant metastasis to the lung. Although there is a good progno- 
sis and successful treatment of the disease in many patients, ini- 
tial diagnostic tests that are more predictive of disease invasion 
and aggressiveness could help stratify patients that need more ag- 
gressive frontline surgery. Due to the highly invasive nature of PTC 
in pediatric patients, recommendations are usually total thyroidec- 
tomy [8] followed by radioactive iodine (RAI) therapy to eliminate 
residual disease or possible metastases. This can lead to significant 
morbidities for patients, many of whom may not need such an ex- 
tensive therapeutic approach. Further, nearly 5% of the patients be- 
come resistant to RAI therapy, with very few second line therapeu- 
tic options available. Current effort s are focused in reducing the 
number of surgeries in pediatric patients, to avoid complications 
and lifetime hormone replacement therapy [9] and could be sig- 
nificantly improved with reliable predictive biomarkers. Lee et al. 
recently reported that NTRK and RET-fusion oncogenes may con- 
fer greater risk for metastatic spread in pediatric PTC, compared to 
PTCs driven by BRAFV600E [10] . 
Development of targeted therapeutics 

Genetic profiling of tumor samples at the time of biopsy and 
diagnosis is being used to discover novel biomarkers, prognos- 

ticate regarding outcome, and identify molecular targets which 
may respond to newer precision therapies. Contrary to chemother- 
apy drugs which indiscriminately attack proliferative cells, targeted 
therapeutics offer a more precise effect against cancer cells. These 
agents block kinase receptors or cytosolic kinases, inhibiting pro- 
liferation and blocking cell survival pathways supported by the 
MAPK and the PI3K pathways. The most common compounds used 
in thyroid cancer therapy are broad kinase inhibitors (MKIs), such 
as Sorafenib, Lenvatinib, Cabozatinib, Donafenib, and Vandetanib 
([ 11 , 12 ]). While these MKIs demonstrate efficacy in thyroid cancer 
treatment, their broad spectrum is often associated with significant 
side effects. Thus, the latest strategies have shifted towards target- 
ing more specific molecular alterations, such as gene fusions. 

Currently, there are two inhibitors approved by the FDA with 
activity against NTRK fusion kinases in adult and pediatric solid 
tumors, Entrectinib and Larotrectinib [13–15] . While Larotrectinib 
has selectivity for TrkA, TrkB and TrkC with high potency ([ 16 , 17 ]), 
Entrectinib also inhibits the kinase activity of ROS1 and ALK ([ 18 , 
19 ]). Both of these inhibitors have been tested in tissue-agnostic 
clinical trials and have shown remarkable pharmacologic efficacy 
in some patients with NTRK-fusion driven thyroid tumors [20–
22] . This expedited, tissue-agnostic trial method is based on the 
presence of specific gene alterations but independent of the tissue 
type. Indeed, other malignancies that have shown significant clini- 
cal response to these inhibitors include salivary-gland tumors, soft 
tissue sarcomas, infantile fibrosarcoma, colon cancer, lung cancer, 
melanoma, gastrointestinal stromal tumors (GIST), cholangiocarci- 
noma, appendiceal tumors, breast tumors, and pancreatic tumors 
([ 10 , 16 , 17 , 23-33 ]). Fortunately, these clinical studies have demon- 
strated significant responses; however, the biochemical mecha- 
nisms of action are still not clear, or the long-term effects fully 
addressed. Very few in vitro or preclinical signaling studies have 
been done to elucidate the impact of these inhibitors on down- 
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stream signaling cascades, or the durability of inhibition. In a pi- 
lot exploratory analysis by Hong et al [19] , the efficacy and long- 
term safety of Larotrectinib treatment were evaluated in 159 pa- 
tients with NTRK-fusion positive solid tumors. The distribution of 
the enrolled patients (clinical trials: NCT02122913, NCT02637687 
and NCT02576431) by age was 12 adults in phase 1, 97 adolescent 
and adults in phase 2 and 50 pediatric patients in phase 1/2. Re- 
sponse to Larotrectinib was observed in 121 of 153 patients, in- 
cluding 19 patients with thyroid tumors, with an overall median 
response duration of 35.2 months. Although the adverse events 
were primarily of grade 1 and 2 with similar frequency observed 
across age groups, further mechanistic and biochemical studies will 
be necessary to fully understand the clinical response of these in- 
hibitors. Further, studies are needed in pediatric patients to deter- 
mine whether life-long kinase inhibitor therapy will be necessary 
and to identify potential long-term side effects of prolong targeted 
therapy. 

One common caveat associated with using kinase inhibitors is 
the acquisition of resistance mechanisms. The emerging mutations 
found in the TRK kinase domain confer drug resistance by inter- 
fering with the drug binding pocket ([ 34 , 35 ]). Some of the mu- 
tations already reported are: TrkA-G595R, -G667S, -G667C, V573M 
and -F589L, and TrkC-G623R and -G696A [36] . There are ongoing 
trials in advance phase to develop the second generation of tar- 
geted therapy against NTRK fusions. Novel drugs such as Selitrec- 
tinib (LOXO-195), Repotrectinib (TPX-0 0 05) [37] and Taletrectinib 
(DS-6051b) [38] are showing promising results, but more in vitro 
and in vivo testing is necessary. 

Expression and membrane localization of the sodium-iodide 
symporter (NIS) are required for cellular uptake and therapeutic 
function of RAI, and diminished expression and membrane target- 
ing of NIS have been demonstrated in patients with RAI-refractory 
thyroid cancer [39] . Several kinase inhibitors have shown potential 
for re-establishing NIS function in RAI-refractory thyroid cancer. 
Recently, Lee et al. reported that Larotrectinib treatment could re- 
store expression of the NIS gene ( SCL5A5 ) [10] . Presumably, the re- 
expression of NIS is mediated through inhibiting the MAPK path- 
way as has been previously reported in other studies whereby 
MAPK-pathway inhibition restores NIS expression and can enhance 
the uptake of RAI [40–42] . Lee et al. used an in vitro model, where 
non-tumoral adult human primary thyroid follicular epithelial cells 
(Nthy-ori-3-1) were transfected to over-express a TRP-NTRK1 con- 
struct. Treatment with Larotrectinib in vitro restored 125 I uptake, 
increased NIS expression and protein levels, and inhibited cell 
growth when used alone or in combination with 131 I therapy. No- 
tably, while the in vitro effects in this study were consistent with 
previous reports of thyroid cancer patients treated with Larotrec- 
tinib ([ 17 , 19 , 43 ]), the concentrations of Larotrectinib used in vitro 
for these studies were 10 0 0-fold higher compared to those used 
in other NTRK-fusion driven cells lines [44–46] and higher than 
the peak concentration achieved in clinical practice [46] . Additional 
studies are needed to determine whether thyroid cells respond dif- 
ferently than other fusion-driven tumor cells, if NTRK-fusion part- 
ner affects response, and whether expression levels of the fusion 
oncogene impact responsiveness to therapy. These studies could 
help to refine the clinical use of these inhibitors and allow per- 
sonalized tailoring of these treatments to specific tumor types and 
fusion-oncogenes. 
Models of pediatric thyroid cancer 

A significant limitation within the thyroid cancer field is the 
lack of fusion models that recapitulate the disease in both adult 
and pediatric contexts. Pediatric thyroid cancer is rare, and as a 
result, the majority of the research and published data are focused 
on adult thyroid models. The high incidence of fusion oncogene 

drivers in children combined with the surge of novel NTRK target 
specific drugs in the last years highlights the need for new models 
of pediatric thyroid cancer. To date, the only available thyroid can- 
cer cell lines are exclusively from adult patients and none of them 
express any chromosomal rearrangement involving NTRK. There is 
one in vivo mouse model that recapitulate NTRK1-TPM3 (TRK-T1) 
fusions in thyroid cancer; however, the fusion gene is expressed in 
the germline and causes tumor development earlier than expected 
in sporadic thyroid cancer ([ 47 , 48 ]). Tissue specific models that 
can be temporally controlled are needed to more closely recapit- 
ulate sporadic tumor development resulting from somatic muta- 
tions. 

While the development of next-generation sequencing (NGS) 
has led to a dramatic expansion of the ability to identify driver 
mutations for individual patient tumors and has generated great 
enthusiasm about the promise of targeted, mutation-based treat- 
ment strategies, this approach may fall short of expectations with- 
out validation in appropriate preclinical models. As an example, 
the Zero Childhood Cancer (ZERO) Program, a precision medicine 
initiative for pediatric cancer in Australia, conducted a large-scale 
study that used whole genome, transcriptome, and methylome 
profiling in a panel of 252 high-risk pediatric tumors to identify 
targetable alterations. Of these, 93.7% had some detectable alter- 
ation and 71.4% were positive for a known therapeutic target. At 
the time of publication, 38 patients had received treatment with 
the relevant targeted therapy, and only 31% had shown evidence 
of objective clinical benefit [49] . Rather than undermining the 
promise of targeted therapeutics overall, this gap between molec- 
ularly targeted therapy and real-world clinical outcomes demon- 
strates that the complexity of tumor behavior in vivo is not fully 
explained by genomic and transcriptomic analysis [50] . 

Many oncogenes have been identified as common driver alter- 
ations for multiple cancer types. In light of this, while targeted 
therapy may have shown efficacy in one tumor type, there may 
be mechanisms for resistance present in other tumor types despite 
the presence of the same driver alteration. The BRAF V600E muta- 
tion has been identified as a therapeutic target in an array of pe- 
diatric and adult cancer types, predominantly including papillary 
thyroid cancer, glioma, melanoma, and colon cancer, among others. 
Despite the common molecular mechanism, targeted BRAF V600E in- 
hibition has shown differential degrees of clinical success between 
these different tumor types. While BRAF V600E inhibition showed 
significant efficacy in BRAF-mutated melanoma, Zhang et al. identi- 
fied a relative intrinsic resistance to BRAF V600E inhibition in BRAF- 
mutated gliomas in a preclinical model that was able to be over- 
come by the addition of a MEK inhibitor [51] . This finding under- 
lines the importance of models specific to each tumor type in pre- 
clinical phases in order to optimize the benefit to patients under- 
going early clinical trials. 

Given the relatively higher predominance of research for adult 
cancers, models of pediatric cancers with pediatric-specific onco- 
gene profiles are lacking. The few that have been done demon- 
strate the importance of creating these models to elucidate the 
molecular mechanisms specific to pediatric tumors that carry 
oncogenes that are rare in the corresponding adult tumor types. 
As with thyroid cancer, malignant astrocytoma occurs in both chil- 
dren and adults, and these populations show significant differ- 
ences in clinical features and frequency of specific oncogene mu- 
tations. Schiffman, et al. identified an activating BRAF V600E muta- 
tion in 7/31 (23%) of pediatric malignant astrocytoma cases, a mu- 
tation that occurs only rarely in adult astrocytomas of the same 
grade [52] . Five of these seven mutations occurred in conjunc- 
tion with a homozygous CDKN2A deletion leading to loss of ex- 
pression of Ink4a-Arf . They subsequently created a BRAF V600E Cre- 
inducible heterozygous knock-in mouse model, which expressed 
mutationally-activated BRAF V600E at physiological levels and led to 
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tumor formation only when crossed with a CDKN2A homozygous 
knock-out. In this model, CDK4/6 was required for cell cycle pro- 
gression of tumor cells, and combined inhibition of BRAFV600E 
and CDK4/6 led to additive anti-tumor effects, indicating a poten- 
tial clinical benefit for patients co-expressing these mutations [53] . 
Similarly, unpublished work from the Franco Lab demonstrates that 
thyroid tumor cells harboring HRAS G12V or BRAF V600E mutations, 
have different pathogenesis depending on the age of the mouse. 
These data suggest that age of the patient has significant impact 
on tumorigenesis, and, therefore, models are needed that recapitu- 
late pediatric versus adult-onset disease. 

For pediatric cancers, preclinical models that recapitulate the 
specific developmental milieu of childhood-onset tumors are also 
needed in order to investigate differences in clinical outcomes be- 
tween pediatric and adult tumors of the same histology. Patient- 
derived xenograft models are valuable but given the rarity of most 
pediatric tumors, it is difficult to compile a panel that can be used 
in large-scale studies [50] . Conventional two-dimensional tissue 
culture techniques have been widely used, but present limitations 
with regard to the applicability of findings to the 3D complexity 
of the in vivo tumor environment. Recently, spheroid and patient- 
derived organoid models have shown promise in more faithfully 
rendering tumor biology and response to therapies in vitro ([ 54 , 
55 ]). Potentially the highest yield model systems for pediatric can- 
cers are animal models with regulated expression of gain- or loss- 
of-function mutations in the target tissue of interest, as has been 
done in small cell lung cancer among others [56] . With this type of 
system, the timing of expression of the mutation of interest can be 
carefully selected to appropriately mimic the developmental tim- 
ing of tumorigenesis in humans. The potential to create pediatric- 
and adult-specific cohorts of tumors that share a common driver 
mutation using this model presents a promising opportunity to 
characterize age-related differences in tumor behavior. This will be 
particularly important in NTRK-driven thyroid tumors whereby we 
observe different prevalence of NTRK-fusions and pathogenesis of 
NTRK-driven tumors between pediatric and adult patients ([ 4 , 57 ]). 
Conclusion 

Following the identification of NTRK fusions as a predominant 
driver mutation in pediatric thyroid cancer [4] , there has been con- 
siderable enthusiasm for the potential use of NTRK targeted in- 
hibitors as an adjunct to standard therapy in cases of advanced pe- 
diatric thyroid cancer carrying an NTRK fusion. However, given the 
complexity of the in vivo tumor environment, and the heteroge- 
neous efficacy of targeted inhibitors among different tumor types, 
preclinical models are needed to characterize the response of pe- 
diatric thyroid tumors to these inhibitors in order to best predict 
their clinical benefit and identify mechanisms of resistance. Several 
advanced in vitro and in vivo models of pediatric cancers have been 
utilized in other cancer types and are needed in pediatric thyroid 
cancer to improve the field’s ability to evaluate new targeted ther- 
apies with the goal of improving outcomes for children and ado- 
lescents with thyroid cancer. 
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