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abstract

PURPOSE Ovarian cancers can exhibit a prominent immune infiltrate, but clinical trials have not demonstrated
substantive response rates to immune checkpoint blockade monotherapy. We aimed to understand genomic
features associated with immunogenicity in BRCA1/2 mutation–associated cancers.

MATERIALS AND METHODS Using the Cancer Genome Atlas whole-exome sequencing, methylation, and ex-
pression data, we analyzed 66 ovarian cancers with either germline or somatic loss of BRCA1/2 and whole-
exome sequencing, immunohistochemistry, and CyTOF in 20 ovarian cancers with germline BRCA1/2 path-
ogenic variants from Penn.

RESULTS We found two groups of BRCA1/2 ovarian cancers differing in their immunogenicity: (1) 37 tumors
significantly enriched for PTEN loss (11, 30%) and BRCA1 promoter–hypermethylated (10, 27%; P = .0016)
and (2) PTEN wild-type (28 of 29 tumors) cancers, with the latter group having longer overall survival (OS;
P = .0186, median OS not reached v median OS = 66.1 months). BRCA1/2-mutant PTEN loss and BRCA1
promoter–hypermethylated cancers were characterized by the decreased composition of lymphocytes esti-
mated by gene expression (P = .0030), cytolytic index (P = .034), and cytokine expression but higher ho-
mologous recombination deficiency scores (P = .00013). Large-scale state transitions were the primary
discriminating feature (P = .001); neither mutational burden nor neoantigen burden could explain differences in
immunogenicity. In Penn tumors, PTEN loss and high homologous recombination deficiency cancers exhibited
fewer CD3+ (P = .05), CD8+ (P = .012), and FOXP3+ (P = .0087) T cells; decreased PRF1 expression
(P = .041); and lower immune costimulatory and inhibitory molecule expression.

CONCLUSION Our study suggests that within ovarian cancers with genetic loss of BRCA1/2 are two subsets
exhibiting differential immunogenicity, with lower levels associated with PTEN loss and BRCA hypermethylation.
These genomic features of BRCA1/2-associated ovarian cancers may inform considerations around how to
optimally deploy immune checkpoint inhibitors in the clinic.

JCO Precis Oncol 6:e2100159. © 2022 by American Society of Clinical Oncology

INTRODUCTION

BRCA1/2 are essential proteins involved in homolo-
gous recombination (HR)–based DNA repair.1 Ovarian
cancers with germline and somatic alterations in
BRCA1/2 share many phenotypic characteristics in-
cluding defects in double-strand break repair, repli-
cation fork stalling, and mutational signatures
reflective of underlying HR deficiency (HRD).2,3

Consequently, they exhibit similar therapeutic vul-
nerabilities, namely, sensitivity to inhibitors of
poly(ADP-ribose) polymerase (PARP) and platinum-
based chemotherapy.4-12 However, resistance to DNA-
damaging therapy, whether intrinsic in the form of the
absence of BRCA1/2 allele–specific loss of

heterozygosity13 or acquired via secondary genetic
events,9,14-18 has necessitated the investigation of or-
thogonal treatment strategies.

One treatment strategy that has been hypothesized to
impart clinical benefits in BRCA1/2-deficient ovarian
cancer is immune checkpoint blockade (ICB).19-25

BRCA1/2-deficient ovarian cancers tend to have a
relatively increased neoantigen load, because of a
reliance on error-prone double-strand break repair,22

which can be predictive in some tumor types of ICB
response.20,22,23 BRCA1/2-deficient ovarian tumors
are also characterized by a high presence of tumor-
infiltrating lymphocytes (TILs),20,22,26,27 which is a
positive prognostic factor for survival.20,22,24 PARP1
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inhibition (PARPi), to which BRCA1/2-deficient ovarian
cancers can respond,5,16,28 has also been shown to increase
TILs and synergistically combine with inhibitors of the im-
mune checkpoint protein CTLA4 in mouse models.29,30

Despite the immunogenic properties of BRCA1/2-deficient
ovarian cancers, the results of clinical trials evaluating ICB
have been variable.31 A single-agent phase Ib clinical trial of
the programmed death-1 (PD1) inhibitor avelumab (n = 125)
with epithelial ovarian cancer found an objective response
rate (ORR) of 9.6% and a 1-year progression-free survival
(PFS) of 10.2%.32 Patients with BRCA1/2 mutations did not
selectively benefit over BRCA1/2 wild-type (WT) patients in
this trial.32,33 A phase II ovarian cancer study of pem-
brolizumab (KEYNOTE-100, n = 367) also showed modest
activity with an ORR of 8.0%; BRCA mutation status was not
evaluated as a biomarker.34 In a single-institution study,
BRCAmutation status, tumor mutational burden (TMB), and
HRD were not associated with response to ICB in patients
with ovarian cancer although a high fraction of genome al-
tered was associated with improvement in PFS and overall
survival.35 A trial combining PARP1 inhibitor niraparib with
the PD1 inhibitor pembrolizumab (n = 62) showed anORR of
18% (5% complete response and 13% partial response36),
which did not differ by tumor BRCA deficiency (11 carriers,
18% response). The accompanying correlative study found
that having a marker of HRD, mutational signature 3 (n = 11,
33%), a positive immune score (n = 3, 9%), or both (n = 6,
18%) was predictive of response.37 Thus, it remains unclear
whether responses were driven primarily by PARPi or
checkpoint blockade or the treatment of two subgroups in the
population.36,38,39 Although larger phase II and III trials
evaluating anti–CTLA-4 and anti-PD1/programmed cell
death ligand-1 in combination with targeted therapy are
underway,21,40 these results suggest that a subset of BRCA1/
2 ovarian cancers may harbor immunosuppressive mech-
anisms that impede clinical benefits.

Herein, we investigated 86 BRCA1/2-deficient ovarian
cancers using genomic data from the Cancer Genome Atlas
(TCGA) and performed genomic and histopathologic

analyses in ovarian cancers from our institute to determine
the genetic and genomic properties associated with in-
trinsic immunogenicity. Our findings illustrate that tran-
scriptional pathways, loss of PTEN, and genomic signatures
of HRD collectively inform intrinsic immunogenicity in
BRCA1/2-deficient ovarian cancers and may aid in the
evaluation of ICB in clinical trials.

MATERIALS AND METHODS

Materials and methods describing the acquisition and se-
quencing of Penn tumors, the acquisition of TCGA data,
immunohistochemistry, CyTOF analysis, and bioinformatics
are described in the Data Supplement.

RESULTS

Genomic and Transcriptomic Properties of BRCA1/2-
Deficient Ovarian Cancers

We investigated immunogenicity in ovarian cancers from
TCGA, comparing BRCA1/2-deficient with HR-proficient
cancers (HR-WT cancers, Data Supplement). Ovarian
cancers with mutations in non-BRCA1/2 genes involved in
HR6 were excluded from our analysis because of the in-
sufficient sample size for immunogenetic analysis (n = 10
RNAseq). TMB (Methods) was significantly different across
BRCA1 versus HR-WT (P = .00032, Kruskal-Wallis) and
across BRCA2 versus HR-WT cancers (P = .00043,
Kruskal-Wallis, Data Supplement). The number of single-
nucleotide nonsynonymous variants and neoantigen load
were similar across BRCA1 versus BRCA2 cancers, and
BRCA1/2-deficient ovarian cancers had a significantly
higher mean number of single-nucleotide nonsynonymous
variants (Data Supplement; P = .0036 and P = .0025) and
neoantigen loads (Data Supplement; P = .018 and
P = .0066, respectively) than HR-WT cancers. BRCA1/2-
deficient cancers collectively exhibited a higher HRD score,
a metric of genomic instability associated with BRCA1/2
dysfunction,8,13 than HR-WT cancers (Data Supplement;
P = 6.74e–05). Notably, neither HRD nor TMB were sig-
nificantly correlated with sequencing coverage (Data
Supplement).

CONTEXT

Key Objective
To understand genomic features associated with immunogenicity in BRCA1/2 mutation–associated ovarian cancers.
Knowledge Generated
We found that BRCA1/2 mutation–associated ovarian groups clustered into two groups: Immune-High, associated with PTEN-

loss and BRCA1 promoter–methylated tumors, and Immune-Low, with a significantly lower overall survival. BRCA1/2
mutation–associated ovarian cancers with PTEN loss had significantly higher homologous recombination deficiency
scores, but exhibited significantly fewer CD3+, CD8+, and FOXP3+ T cells.

Relevance
Guided by molecular features, BRCA1/2 mutation–associated ovarian cancers can be divided into two groups with differing

levels of immunogenicity, which may inform the use of immune checkpoint inhibitors in this patient group.
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We investigated biologic pathways that may differentiate
BRCA1/2-deficient ovarian cancers (Methods). Clustering
of gene set variation analysis scores across all cancers
found that three recurring biologic functions inclusive of
immune, hematologic, and tumor-suppressive (p53 and
ATM) pathways were significantly upregulated in cluster c2
(Fig 1A and Data Supplement). We evaluated the rela-
tionship between PTEN status and cluster assignment, as
PTEN loss is a frequent driving event in BRCA1/2 high
grade serous ovarian cancer41 and has been shown to
impede immune cell infiltration in other solid tumors.42,43

We confirmed in our cohort that BRCA1/2 mutations were
associated with a higher rate of PTEN loss; 17.3% of
BRCA1/2 cancers had homozygous PTEN loss versus 7.7%
of HR WT tumors (P = .019, Fisher’s exact test). PIK3CA
amplification was found in 20% of all samples with higher
rates in the BRCA1 hypermethylation group at 30% than
those with BRCA1/2 somatic and germline mutations
(14%) and non-BRCA1/2 (17%; Data Supplement). Using
the chi-square test of independence, we found that
BRCA1/2-deficient PTEN-WT cancers were significantly
over-represented in one cluster (28 of 29 tumors), that is,
c2, whereas BRCA1 promoter–hypermethylated and
BRCA1/2-deficient cancers with homozygous loss of PTEN
(Methods) were significantly over-represented in cluster c1
(14 of 37 tumors, Fig 1B, P = .0016), but not PIK3CA
amplification. When comparing overall survival across
cluster c1 versus cluster c2 by multivariate Cox analysis, we
found significantly worse prognosis in cluster c1 relative to
cluster c2 when adjusting for grade, HRD level, ploidy,
BRCA mutation, and stage (Fig 1C, P = .0186, hazard
ratio = 4.19 [CI, 1.27 to 13.83]). When comparing PFS
across clusters, we found a borderline significantly worse
prognosis in cluster c1 relative to cluster c2 when adjusting
for the same set of covariates (Fig 1C, P = .062, hazard
ratio = 3.26 [CI, 0.94 to 11.33]).

Immunogenicity of BRCA1/2-Deficient Ovarian Cancers
by PTEN Status and Mechanism of BRCA1/2 Loss
of Function

Given the transcriptional clusters observed in Figure 1A, we
categorized BRCA1/2-deficient cancers on the basis of
their PTEN status and mechanism of BRCA1/2 loss.44 We
found no significant differences in TMB or neoantigen load
when comparing on the basis of PTEN loss status within
either germline or somatic BRCA1/2-deficient ovarian
cancers or HR-WT cancers (Data Supplement). However,
HRD scores were significantly higher in BRCA1/2-deficient
PTEN-loss and BRCA1 promoter–hypermethylated can-
cers as compared with BRCA1/2-deficient PTEN-WT and
HR-WT cancers (Fig 2A; P = .024 and P = .024, re-
spectively). Among the three components of the HRD score
(Methods), large scale state transitions (LST) were signif-
icantly lower in BRCA1/2-deficient PTEN-WT ovarian
cancers when compared with BRCA1/2-deficient PTEN-
loss (P = .012) and BRCA1 promoter–hypermethylated

(P = .010 for LST) cancers (Fig 2B). The LST scores of
BRCA1/2-deficient PTEN-WT cancers were similar to those
of HR-WT cancers. Notably, non-telomeric allelic imbal-
ance (NtAI) scores were significantly higher in BRCA1/2-
deficient PTEN WT and HR-WT cancers versus BRCA1/2-
deficient PTEN-loss cancers (Fig 2B).

We determined tumor immunogenicity by comparing
expression-based immune indices, including cytolytic in-
dex (CIind)45 and immune ESTIMATE (iEst) score.46 Nei-
ther index differed significantly when comparing across
cancers with BRCA1 versus BRCA2 alterations or germline
versus somatic BRCA1/2 alterations, or PTEN-loss versus
PTEN-WT among HR-WT cancers (Data Supplement).
Both indices correlated negatively with tumor purity esti-
mated by copy number variation (CNV; see the Methods;
Data Supplement; CIind: R = –0.25, P = .038; iEst:
R = –0.38, P = .0013). The LST score correlated negatively
with iEst scores and not with CIind (Data Supplement;
CIind: R = –0.079, P = .52; iEst: R = –0.29, P = .019),
whereas loss of heterozygosity score and NtAi scores did
not exhibit any significant associations (data not shown).
The HRD score showed a borderline significantly negative
association with the iEst score, but not CIind (Data Sup-
plement; CIind: R = –0.077, P = .53; iEst: R = –0.23,
P = .067). When stratifying further, we found thatBRCA1/2-
deficient PTEN-loss and BRCA1
promoter–hypermethylated cancers had lower CIind
(P = .034 and P = .042, respectively) and, for the latter
group, decreased iEst versus BRCA1/2-deficient PTEN-WT
cancers (P = .003; Figs 2C and 2D). Tumor purity was also
lower in BRCA1/2-deficient PTEN-WT versus BRCA1/2-de-
ficient PTEN-loss tumors (Data Supplement, P = 9.34e–05).
We analyzed the expression of multiple immune-regulatory
genes that we curated from the literature26,29,45,47,48 as having
important roles with respect to response to ICB. We found
significantly higher expression of ADORA2A (P = .033),
DOK3 (P = .0026), HAVCR2 (P = .00055), CD28
(P = .0037), CD86 (P = .00091), ICOS (P = .05), and
TNFRSF17 (P = .033) in BRCA1/2-deficient PTEN-WT tu-
mors versus BRCA1 promoter–hypermethylated and
BRCA1/2 PTEN-loss tumors (Fig 2E), consistent with the
hypothesis that elevated expression of immune inhibitors
(ADORA2A, DOK3, and HAVCR2) serves to counter-regulate
heightened immune activity.25,26 T-cell chemoattractants
(CCL5, CXCL9, CXCL10, and CXCL11) coordinately trended
toward higher expression in BRCA1/2-deficient PTEN-WT
tumors, but not in BRCA1 promoter–hypermethylated or
BRCA1/2-deficient PTEN-loss tumors. HLA expression did
not have any discernable pattern across the three groups.

We aimed to identify CNVs affecting gene regions involved
in immune system function (Reactome, n = 946 immune-
related genes) that may distinguish immunologically cold
(BRCA1/2-deficient PTEN-loss + BRCA1-hypermethylated)
cancers versus hot cancers (BRCA1/2-deficient, PTEN-
WT), as focal CNVs affecting genes involved in immune
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function influence tumor immunophenotypes.45 By an L1-
regularized support vector machine,49 we identified 42
genes distinguishing the two groups with an area under the

receiver operating characteristic curve of 0.96 (Data Sup-
plement, hg38 genomic locations). We observed deletions
in EIF2AK2, NCF2, and KPNA3, among BRCA1/2-deficient
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and PFS (hazard ratio = 3.26 [CI, 0.94 to 11.33]) curves across c1 versus c2 GSVA signaling clusters in BRCA1/2 ovarian cancers. *P , .05, **P , .01,
Student’s t-test, Cox Proportional Hazards. BRCA1-HM, BRCA1-hypermethylated; BRCA1/2-P, BRCA1/2 PTEN wild-type; BRCA1/2-PL, BRCA1/2 PTEN
loss; FS, Frameshift indel; GSVA, gene set variation analysis; OS, overall survival; PFS, progression-free survival; SNV, single-nucleotide variant; WT, wild-type.
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PTEN-WT ovarian cancers. Gains in DEFB4A and NLRP1
were more frequently observed in BRCA1/2-deficient
PTEN-loss or BRCA1 promoter–hypermethylated ovarian
cancers.

Association of PTEN Loss and HRD Score With Immune
Infiltration and Cytotoxicity in BRCA1/2-Deficient Penn
Ovarian Cancers

To validate the immunologic effects of PTEN loss, we
evaluated Penn ovarian cancers associated with germline
BRCA1/2 mutations (n = 18, Data Supplement). Multiple
markers corresponding to adaptive and innate immune cell
function were compared by PTEN status (Methods).
BRCA1/2-deficient PTEN-loss cancers (n = 5) were
characterized by significantly lower intratumoral CD3+ cells
(P = .05), intratumoral CD8+ (P = .012), and intratumoral
and stromal FOXP3+ (P = .0087 and P = .037, respectively)
immune cells (Figs 3A and 3B), revealing that PTEN loss is
associated with T-cell exclusion in BRCA1/2-deficient
ovarian cancer. Other immune cell types (CD4, CD20, and
CD68) did not demonstrate a statistically significant dif-
ference by PTEN status (Data Supplement). Furthermore,
BRCA1/2-deficient PTEN-loss cancers were characterized
by lower numbers of PRF1 (perforin 1)-positive cells
(P = .041, Figs 3C and 3D), suggesting lower antitumor
cytolytic activity in this subset. To determine whether the
difference in cytolytic activity was due to fewer CD8+ cells
or due to lower immune activity on a per-cell basis, we
calculated the ratio of PRF1+ to CD8+ cells and found no
significant difference (P = .71) across PTEN-WT versus
PTEN-loss BRCA1/2-deficient cancers. MATH score, a
measure of intratumoral heterogeneity,50 was significantly
higher in BRCA1/2-deficient PTEN-loss cancers than
BRCA1/2-deficient PTEN-WT cancers (Fig 3E, P = .0042),
in agreement with previous work demonstrating that
CD8+ T-cell infiltration is negatively associated with ovarian
cancers exhibiting greater clonal diversity.51

CyTOF analysis was performed on 11 available Penn tumor
digests (n = 8) or ascites samples (n = 3) with BRCA1/2
mutations (2 of 11 with homozygous PTEN loss) to measure
the expression of immune-regulatory molecules in CD3+ T-
cell subsets in the tumor microenvironment (Methods, Data
Supplement). viSNE plots mapped the location of immune
subsets such as CD8+ and CD8– T cells (Data Supplement).
viSNE analysis52,53 identified dense clusters and higher fre-
quencies of T cells in BRCA1/2-deficient PTEN-WT tumors
expressing relatively high amounts of inhibitory immune
checkpoints CTLA4, LAG3, and TIGIT, as well as

FOXP3+ cells in a representative BRCA1 ovarian cancer, in
contrast to comparatively lower overall expression in aBRCA1
PTEN-loss cancer (Fig 4A). The proinflammatory and cos-
timulatory molecules interleukin (IL)-2, interferon gamma, IL-
6, and CD28 were also expressed by more T cells at high
levels in the PTEN-WT cancer relative to the PTEN-loss
cancer (Fig 4B), underscoring the association of PTEN loss
with reduced T-cell activation in the tumormicroenvironment.

We investigated the association of the HRD score with
immune cell subsets and immunomodulatory molecules in
BRCA1/2-deficient ovarian cancers (Fig 4C). We found
negative correlations between the HRD score and the
frequency of tumor-associated T cells expressing CTLA4,
LAG3, and CD160 immune inhibitory molecules and
FOXP3+ T cells, which have been shown to accumulate at
sites of cytotoxic T cells to mitigate antitumor immune
attack.54,55 Furthermore, proinflammatory cytokines (in-
terferon gamma, IL-2), cytolytic pore-forming molecules
(PRF and GZMB), and markers of proliferating or activated
T cells (pSTAT5, Ki67, CD25, and GITR) were all negatively
correlated with the HRD score (Fig 4C). Despite the neg-
ative correlations, the P values are nonsignificant likely
because of the sample size.

Notably, the BRCA1/2-deficient PTEN-loss tumors had a
higher preponderance of CD103+CD69+CD127– resident
memory T cells (Trm) expressing PD-1 relative to the PTEN-
WT tumor (Data Supplement). Furthermore, the HRD score
is positively associated with CD103+CD69+CD127– Trm
cells expressing PD-1 (Data Supplement).56,57 Taken to-
gether, these results further illustrate that PTEN loss or high
HRD may inform immunologic states in BRCA1/2-deficient
ovarian cancers.

DISCUSSION

Our work sheds light on the tumor-immune heterogeneity in
ovarian cancers with BRCA1/2 alterations and potentially
gives novel insights into the treatment of these cancers with
ICB. Similar to other studies of ovarian cancer, we found
PIK3CA amplification in 20% of ovarian cancers but did not
identify an association with immunogenicity.58 Our results
are similar to immunologic studies in other cancers59-64 with
PTEN loss and are also consistent with a study of 5,400
ovarian cancers, with 3,244 being high-grade serous,
which demonstrated a correlation between cytoplasmic
PTEN staining and low CD8+ T cells.63 Notably, inBRCA1/2
breast cancers, we also found that markers of immuno-
genicity were inversely correlated with the HRD score in
both TGCA and local tumor analyses, although likely

FIG 2. (continued) by PTEN status (PTEN loss, n = 12; PTENWT, n = 43) versus TCGABRCA1-HM ovarian cancers (n = 11); and (F) coefficient weights
from SVM analysis of copy number variations illustrating gene importance across TCGA BRCA1/2-P (n = 43) versus TCGA BRCA1/2-PL (n = 12) and
BRCA1-HM (n = 11) ovarian cancers. *P, .05, **P, .01, Student’s t-test, analysis of variance.BRCA1/2-P, BRCA1/2 PTENwild-type; BRCA1/2-PL,
BRCA1/2 PTEN loss; CIind, cytolytic index; HR, homologous recombination; HRD, homologous recombination deficiency; iEst, immune ESTIMATE;
LOH, loss of heterozygosity; LST, large scale state transitions; NtAI, non-telomeric allelic imbalance; SVM, support vector machine; TCGA, the Cancer
Genome Atlas; WT, wild-type.
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through distinct underlying genetic mechanisms.65 Fur-
thermore, Davoli et al and Thorrson et al found negative
correlations between CNV burden and measures of
immunogenicity,51,64-69 consistent with our analysis.

Our findings are also consistent with previous observations
in melanoma in which T-cell exclusion is a mechanism of
mitigating immune attack in PTEN-loss cancers.69,70 Our
data suggest that immune exclusion in PTEN-loss cancers
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FIG 4. CyTOF analysis of immunoinhibitory and cytolytic activity in Penn BRCA1/2 ovarian cancers by PTEN status and HRD score: (A) viSNE maps of
CD4+ and CD8+ T cells illustrating differences in expression of inhibitory immune checkpoint molecules CTLA4, LAG3, TIGIT, and FOXP3 from a patient
with a germlineBRCA1/2-PL tumor versus a patient with a BRCA1/2-P; (B) viSNEmaps of CD4+ and CD8+ T cells illustrating differences in expression of
proinflammatory and costimulatory immune molecules IL2, IFNG, IL6, and CD28 from a patient with a germline BRCA1/2-PL versus a patient with a
BRCA1/2-P; and (C) Scatterplots illustrating negative correlations between the HRD score and the expression of inhibitory (continued on following page)
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may result from reduced expression of chemokines that
play important roles in T-cell recruitment.70 This finding is
consistent with our recent finding that a reduction of both
tumor intrinsic CCL5 expression and CCL5-driven CXCL9
expression by macrophages promotes TIL desertification
and immune blunting, whereas CCL5 and CXCL9 over-
expression in the ovarian cancer microenvironment is as-
sociated with CD8+ T-cell infiltration.48

Our observations with HRD and immunogenicity highlight
that although HRD contributes to an increase in the number
of neoantigens, chronic exposure of TILs to their cognate
antigens may contribute to a quiescent phenotype in ovarian
cancer.71-73 CyTOF analysis showed a higher preponderance
of PD1-expressing CD103+CD69+CD127– Trm cells in
PTEN-loss or HRD-high cancers. Trm cells have been shown
in ovarian cancer to be quiescent,71 and anti-PD1 therapy
can rapidly induce tumor cytotoxicity.57,74 Notably, cancers
with higher HRD are more intrinsically responsive to DNA-
damaging agents,8,13 which can work with ICB to syner-
gistically eliminate solid tumors in mouse models.29,30 Our
data suggest that BRCA1/2-deficient PTEN-loss and BRCA1
promoter–hypermethylated cancers may respond to PARPi,
whereas ICB may be optimal for patients BRCA1/2-deficient
PTEN-WT cancer. Thus, combination therapy may be effi-
cacious, as PARPi and ICB each treat a subgroup ofBRCA1/
2-deficient ovarian cancers.75

From pathway analysis, we found that BRCA1/2-deficient
PTEN-WT ovarian cancers had higher expression of ATM-
driven DNA repair pathways, consistent with previous
studies demonstrating a prevalent role of PTEN in HR-
based genomic repair.76,77 Along with lower prevalence of
LSTs in this group, these results indicate that partial re-
tention of DNA repair activity may be less immunosup-
pressive than full loss. These findings also indicate that
BRCA1/2-deficient ovarian cancers may represent another
example in which aneuploidy and large CNVs68,78 are im-
portant driving forces that regulate immune responses and
may supersede TMB as the primary immune influence.47

Although nearly all BRCA1/2-deficient ovarian cancers in our
study harbored a TP53mutation, p53 signaling in BRCA1/2-
deficient PTEN-WT cancers was elevated relative to the
remaining cancers by gene set variation analysis. TP53 may

be a key driver of immune responses in this subset of ovarian
cancers, as a previous study found that pharmacologic ac-
tivation of p53 in the tumor microenvironment enhances
CD8-driven immunogenic cell death in mouse models.79

Furthermore, our analyses of somatic CNVs identified a
greater prevalence of deletions of EIF2AK2, NCF2, and
KPNA3, all of which are either targets of or influence p53
signaling, in the BRCA1/2 PTEN-loss and BRCA1
promoter–hypermethylated group.80-82 In particular, EIF2AK2
is a target of TP53 activity, serving a proapoptotic role for
tumor suppression.83 Themore prevalent deletion ofEIF2AK2
in PTEN-WT ovarian cancers in conjunction with heightened
p53 signaling suggests an intricate proinflammatory mech-
anism of p53 in ovarian cancer with concomitant selection
against the tumor-suppressive role of EIF2AK2.

Although the study benefited from inclusion of both TCGA
and locally generated data, each sample set had limita-
tions. TGCA data did not include linked immunohisto-
chemistry data examining immune cells, and the Penn data
derived from formalin-fixed paraffin-embedded tissues
were limited in terms of expression analysis. Neither sample
set had whole genome sequencing data, which most ac-
curately characterize TMB and large-scale CNVs. Several
findings warrant independent validation, in particular, the
CyTOF analysis and association of the expression signa-
tures with outcomes. In addition, a study ofBRCA1/2 breast
cancer using publicly available TCGA and Wellcome Trust
Institute data suggests that PTEN status modulates im-
munogenicity but, by contrast, found that PTEN loss was
associated with a more T-cell–inflamed signature.84 How-
ever, PTEN loss also correlates withBRCA1mutation status
and triple-negative breast cancer status, and in their
analysis, the latter may account for the enrichment of
T-cell–inflamed signatures, which we and many others
have found to be relatively more immunogenic than
hormone-positive breast cancers.65

Taken together, our study gives novel insights into the
genetic events that may contribute to immunosuppression
in BRCA1/2-deficient ovarian cancers, defining a subset of
immunologically cold tumors. This understanding may help
craft more efficacious use of ICB in the clinic.
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