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1. Introduction
This Special Issue of the Journal of Clinical Medicine is devoted to anesthesia and

perioperative care. While it is the glazed through aspect of surgical care, it is considered one
of the most spectacular achievements of modern medicine. The scope of JCM’s Special Issue
intends to highlight the debate regarding the role of anesthesia and the anesthesiologist in
perioperative care and how future anesthesiologists can add new value to patient care.

2. New Paradigm of Anesthesia Care
The ability to take away the surgical patient’s consciousness and pain while render-

ing him or her motionless in a state of temporary amnesia has enabled great progress in
surgery, imaging, and diseases prevention (Figure 1) [1]. Increased safety in delivering
anesthesia has also made undeniable progress over the last 40 years. Between 1940 and
2020, anesthesia-related mortality was reduced from 1:1000 to 1:1,000,000. The invention
of pulse oximetry, capnography, ultrasound, development of short-acting and liver- or
renal-independent medications (esmolol, remifentanil, etc.), and a novel pharmacological
method to reverse anesthesia (sugammadex) are advances behind the more modern suc-
cesses of anesthesia (Figure 1) [2–6]. Improved workflows, safety procedures (checklists,
simulations), and maintaining a high level of professional competency have also had a
pivotal role in improving outcomes [7–9]. The drop in mortality is so profound that studies
investigating anesthesia mortality are virtually impossible, with most of the current data
published in case series or audits of legal cases [10–12]. A decrease in intra-operative
morbidity accompanies decreased mortality [12–17]. The next milestone for anesthesia
in developed countries is debatable, but minimizing maladaptive allostatic sequela after
peri-surgical stress seems impactful, achievable, and uniquely positioned to be pursued by
next generation of anesthesiologists (Figure 1).

Surgical procedures and related events can result in profound disturbances in home-
ostasis [18]. The physiological mechanisms designed to prevent or minimize potential
damage during normal life may be superfluous during surgery. Their activation results
in a less favorable outcome unless suppressed by anesthesia. For example, pain sensation
triggers sympathetic discharge and the fight or flight reaction. However, during surgery,
sympathetic activity may result in cardiomyopathy and other complications. Anesthesia
partially abolishes this effect yet at the cost of side effects [19]. Concomitantly, surgical
trauma induces a profound adaptive response, affecting several layers of bodily function-
ing. Most of these responses are adaptive, but they may lead to undesirable outcomes in
certain circumstances. For example, activating the immune system is critical to healing. It
also causes collateral damage, resulting in organ failure and increased hypercoagulabil-
ity [20,21]. Finally, the anesthetic used may have an adverse effect during peri-operative
period, resulting in neurotoxicity and potential neurodegeneration [22].
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results in a less favorable outcome unless suppressed by anesthesia. For example, pain 
sensation triggers sympathetic discharge and the fight or flight reaction. However, during 
surgery, sympathetic activity may result in cardiomyopathy and other complications. 
Anesthesia partially abolishes this effect yet at the cost of side effects [19]. Concomitantly, 
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to healing. It also causes collateral damage, resulting in organ failure and increased 
hypercoagulability [20,21]. Finally, the anesthetic used may have an adverse effect during 
peri-operative period, resulting in neurotoxicity and potential neurodegeneration [22].  

It is becoming increasingly apparent that regaining preoperative homeostasis during 
the postsurgical period is impossible in some individuals [19,20]. The postsurgical processes 
are different from the primary pathological process that leads to surgery as they center 
around surgical insult and anesthesia. For example, immune system activation resembles 
sterile inflammation, not a septic process [23,24,25,26,27,28]. Surgery involves significant 
tissue destruction, blood loss, alteration in microbiota with the possible leak of the 
inflammatory pathogen-associated molecular pattern (PAMP), and the induction of 
catabolism [26,29,30,31,32,33,34,35,36]. Similar abnormalities are seen in other critical care 
illnesses, including traumatic brain injury, COVID-19, ARDS, stroke, and acute coronary 
syndrome. However, some important differences exist. The postsurgical state may extend 
beyond immediate recovery and the postoperative period, lasting months or representing a 
new allesotatic state [28,37,38,39,40]. Consequently, an individual cannot regain 
preoperative health or homeostasis. Alternatively, the newly acquired process remains in 
place long enough to contribute to increased morbidity after several years, even if the 
change eventually resolves [41]. Allostasis assumes the emergence of a new adaptive 
balance, which may be beneficial or detrimental to the long-term health of the individual 
(Figure 1) [37,38]. Epigenetic mechanisms, miRNA, acquired autoreactivity, metabolic 
shifts, and the persistent subcortical changes in the central nervous system responsible for 
homeostasis are underpinning mechanisms that lead to persistent post-surgical sequelae 
and allostasis [21,36,42,43,44,45,46,47,48,49,50]. Individuals with pre-existing comorbidities 
and disadvantageous socia-economical backgrounds will be more vulnerable to the 
emergence and persistence of unfavorable allostasis [51].  

The recovery trajectory depends on the inherited features of the patient and the 
nature and magnitude of the stressor (Figure 2). Even a single incident of anesthesia, 
surgery, or other critical grade insults may reverberate for months and even years 
[27,32,33,39,42]. These parameters are modifiable during the post- and perioperative 
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It is becoming increasingly apparent that regaining preoperative homeostasis during
the postsurgical period is impossible in some individuals [19,20]. The postsurgical processes
are different from the primary pathological process that leads to surgery as they center
around surgical insult and anesthesia. For example, immune system activation resembles
sterile inflammation, not a septic process [23–28]. Surgery involves significant tissue de-
struction, blood loss, alteration in microbiota with the possible leak of the inflammatory
pathogen-associated molecular pattern (PAMP), and the induction of catabolism [26,29–36].
Similar abnormalities are seen in other critical care illnesses, including traumatic brain
injury, COVID-19, ARDS, stroke, and acute coronary syndrome. However, some important
differences exist. The postsurgical state may extend beyond immediate recovery and the
postoperative period, lasting months or representing a new allesotatic state [28,37–40]. Con-
sequently, an individual cannot regain preoperative health or homeostasis. Alternatively,
the newly acquired process remains in place long enough to contribute to increased mor-
bidity after several years, even if the change eventually resolves [41]. Allostasis assumes
the emergence of a new adaptive balance, which may be beneficial or detrimental to the
long-term health of the individual (Figure 1) [37,38]. Epigenetic mechanisms, miRNA, ac-
quired autoreactivity, metabolic shifts, and the persistent subcortical changes in the central
nervous system responsible for homeostasis are underpinning mechanisms that lead to
persistent post-surgical sequelae and allostasis [21,36,42–50]. Individuals with pre-existing
comorbidities and disadvantageous socia-economical backgrounds will be more vulnerable
to the emergence and persistence of unfavorable allostasis [51].

The recovery trajectory depends on the inherited features of the patient and the nature
and magnitude of the stressor (Figure 2). Even a single incident of anesthesia, surgery, or
other critical grade insults may reverberate for months and even years [27,32,33,39,42]. These
parameters are modifiable during the post- and perioperative period, placing anesthesiologists
in a unique position to foster restoration of presurgical health.
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3. The Effect of Anesthesia on Long-Term Postoperative Outcomes
The idea that anesthetic management affects long-term outcomes is often debated

but relatively few new studies of high quality have been published. The short duration
of anesthesia and the predominance of surgery-driven insult link the latter to long-term
unfavorable declines [52]. Initial enthusiasm was quickly dampened by conflicting data,
showing the variable effects of various anesthesia techniques on long-term outcomes with
the almost “classical” failure of experimental data to yield a consistent clinical practice
adoption [53–57]. Few studies are reviewed below to demonstrate methodological difficulty
in proving the point.

The application of regional anesthesia seems to be advantageous as compared to
general anesthesia via several mechanisms. First, it reduces inflammation and sympa-
thetic discharge while providing more effective oxygenation that in turn implies a lack
of hypotension [58]. However, translating the hypothetical and bench-driven benefits to
the clinical realm is not straightforward despite several areas of potential benefits [59].
Poor quality studies and insufficient understanding of the interaction between cancer and
anesthesia may be at fault [60,61]. The highly debated question of regional anesthesia
reducing metastasis recurrence long-term is difficult to analyze given the plethora of stud-
ies that fail to provide clear benefits of using regional anesthesia despite the importance
of the question [52–64]. Remarkably, the depth of anesthesia correlates in some studies
with the emergence of postoperative delirium [65–67]. The emergence of delirium car-
ries a significant risk of long-term decline, but definitive studies are missing. One study
suggests that a singular dose of clonidine changes mortality for several years to come,
but metanalysis does not confirm these initial observations [68–70]. Nevertheless, the
introduction of dexmedetomidine reinvigorates the field with several groups, suggesting
long-term protective benefits [71,72]. Interestingly, some authors suggest that dampening
the initial sympathetic response results in a more effective resolution of the inflammation
with potential long-term benefits. Still, large studies failed to demonstrate the benefit
of pharmacological sympathectomy on outcomes delayed by years. There is a need to
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appreciate the extraordinary methodological obstacles to be overcome while studying the
long-term effect of anesthesia.

Despite the lack of clear advantages of different strategies to execute anesthesia plan
on long-term outcomes, interest should not abate. The application of the anesthesia tech-
nique has to be tailored to the patient’s condition in more detail and toward a resolution,
allowing for the personalization of therapy. For example, identifying a particularly vul-
nerable population may yield tangible long-term benefits [73,74]. What makes this task
particularly difficult is complexity of interventions. For example, ketamine has several
properties, including a variable effect on the cardiovascular system, sympathetic system
activation, and immunomodulation. This nexus of interactions and potential effects results
in the difficult application of an anesthesia compound to precisely defined clinical targets.
Anesthetic agents also have adverse effects on top of the primary desired rendering pa-
tients unconscious [75,76]. However, the first step in understanding the delivery of clinical
interventions is to provide a standardized was to document interventions.

4. Long-Term Effects Intervention
The lack of clear success in enhancing long-term outcomes in patients undergoing

surgery and anesthesia should not sway anesthesiologists from pursuing the goal of restor-
ing patient health to presurgical homeostasis. The anesthesiologist could provide enhanced
care before, during, and after surgical insult to restore pre-anesthesia homeostasis in routine
cases (Figure 3).
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4.1. Preoperative Period
Currently, anesthesiologists focus on perioperative care, often limited to preoperative

visits or assessments, the delivery of anesthesia, and immediate recovery. Sometimes, a
preoperative clinic allows for more pre-emptive engagement with patients. Such a short
engagement makes long-term continuity of care impossible despite providing potential
opportunities to prepare the patient for surgery.

The critical task at hand is the optimization of the patient before surgery. This may
require a postponement of the surgery, but there is a relative paucity of data to guide optimal
timing [77,78]. Some advanced computational techniques (artificial intelligence) may help
determine the optimal procedure timing, allowing more time for patient optimization [74].
The same AI algorithm could identify which interventions need to be deployed before surgery,
providing the most advantageous edge for the patient in preparation for surgical stress [79].

Methods exist to prepare an individual for surgical stress more resiliently. First in
order of importance should be the elimination of any additional and modifiable stressors.
Drug abuse, obesity, obstructive sleep apnea, uncontrolled diabetes, or hypertension are
potential addressable factors. Encouraging patients to address them will positively impact
their outcomes. Adequate nutrition is critical for the individual’s recovery as post-surgical
catabolism is inevitable [80,81]. Finally, physical activity is critical before surgery as aerobic
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exercise positively affects the heart and lungs, prevents weight gain, and is linked to the
favorable outcome of anesthesia and surgery. Cognitive engagement also has a positive
effect [80,82–84]. Engagement of the patients in the process is critical [80]. The barrier may
be reimbursement structure.

The nature of the approach increases the individual’s resilience to surgical stress
before surgery. Preconditioning is the phenomenon that triggers an adaptive response to
significant stress by providing a low-grade trigger before an anticipated major stressor
occurs [85–88]. As a result, this adaptive response is more rapidly deployed in case of
stress. Alternative mechanisms dampen the immunological response [89]. A human
trial seemed to demonstrate the benefits of this approach when volatile anesthetics were
used, but only short-term effects were studied [90]. Many preconditioning techniques
involve significant surgical manipulation, but less invasive methods were also suggested,
including electroacupuncture or the injection of danger-associated molecular patterns
(DAMP) protein [91,92].

Another approach is to proactively mediating the immune system response to mitigate
immune system activation in peri-operative time. However, the failure of several cytokine-
targeted therapies in several critical care conditions suggests that this approach must be
quite selective. One alternative may be to reprogram the innate immune mechanism before
the surgery to mitigate potential overactivation without globally suppressing it [93–95].
Manipulation with TLR pathways may be particularly beneficial in individuals undergoing
procedures with a high risk of pathogen-associated molecular patterns (PAMP) release.
Protectin is particularly effective in modulating granulocyte activation [96–98]. Finally,
inducing M1 to M2 switch or modulating T cell population is another potential pre-emptive
strategy [99,100]. Alternative means may involve manipulation with glucose metabolism
and inflammation by increasing their resilience to surgical stress [101–103].

4.2. Operative Period
So far, the primary effect on long-term peri-operative mortality demonstrated that a

minimization of the surgical insult by introducing laparoscopic or robotic surgery and short-
ening the duration of cases in general. The anesthesia management of interoperative care
should entail carefully titratable anesthesia at a level tailored to the procedure, utilizing an
objective measurement while preventing repetitive hypotension and hypoxemia [104–107].
However, a more precise definition of hypotension is needed. That definition should be con-
textualized and personalized to each patient based on observation during the preoperative
period [104]. The data to decide which anesthetic is preferable are conflicting. Some studies
have demonstrated the benefit of volatile anesthetic, while others are more supportive of
intravenous anesthesia [108,109]. Tailoring anesthesia drugs to specific surgery needs is a
potential strategy, yet adequate studies need to be conducted. Data on regional anesthesia
are also inconclusive but suggest that utilizing regional techniques in elderly patients in
pre-existing decline are potentially more beneficial long-term [59,60,63,64].

4.3. Postoperative Period
Current evidence strongly support that enhanced recovery after surgery (ERAS) phi-

losophy accelerates patients return nominal activity. Inherently, several protocols in ERAS
seem to minimize iatrogenic injury despite challenging pre-existing dogmas. Physiologi-
cally, ERAS protocol minimizes patient exposure to a challenging hospital environment,
focusing on rapid discharge from the hospital. Post-discharge engagement in a rehabil-
itation plan is critical to minimize long-term decline [110]. Postoperative care has also
included the reconciliation of medication to address pre-existing conditions. Two studies
demonstrated the interesting effect of diminished frequency of statin intake, suggesting that
perception of potential complications may lead to the withdrawal of beneficial medications.

Several studies suggested that surgery results in smoldering inflammation and altered
metabolism. The removal of DAMP would be the logical strategy and is close to being
deployed clinically [24,26,96]. However, the therapeutic means to address it are somewhat
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limited as the current diagnostic means to characterize immune system activation are
still very constrained. There is a need for more advanced, multidimensional techniques to
characterize the post-surgical landscape as it was already demonstrated in trauma [111]. In
terms of intervention, several means are available for clinical testing based on already conducted
bench research. Lipoxin, annexin, HIF-1, H2S, and resolvins are examples of endogenous
mediators that could be employed to terminate smoldering inflammation [48,100,112–114].
Vagal nerve stimulation seems to be even more reachable, considering their significant utilization
in other fields of medicine [115,116]. Finally, overactivated genes can be targeted with genome
therapy [117,118]. All these measures should aim at the restoration of presurgical leukocyte
status and metabolome. However, a precise understanding of the immune and metabolic
systems must first be attained as the immune and metabolic systems are multidimensional and
differentially activated [48,49,119].

5. Innovation in Service
The implementation of any strategy requires a qualitative change in healthcare de-

livery. Obamacare, corporatization, and COVID-19 are rapidly accelerating innovation
in medicine [120,121]. This is remarkable achievement considering that medicine is a
conservative field. Several innovative techniques will challenge current anesthesiology
practice, while their adaptation should provide a much-needed qualitative jump to improve
long-term outcomes.

AI (artificial intelligence)/CDSS (computer-decision support systems) are increasing
in importance in healthcare delivery, resulting in greater investment [122–124]. Their
current role is mostly focused on radiology and image analysis, but it is only a question of
time before they enter the anesthesia world in the domains of monitoring, adverse event
prediction, and drug delivery. They can augment the delivery of anesthesia by serving as
virtual assistants [125]. Plus, they are pivotal in analyzing long-term continuous data as
well as taking into account several variables at the same time. Consequently, a correlation
between a truly significant clinical factor and long-term outcome can be uncovered [126].
Hopefully, they will be used to assess the risk of optimal timing for surgery [77]. They
can predict what is a critical, pre-emptive intervention to avoid hypotension and hypoxia
during surgery [105]. Finally, as a neuronal network, they can be utilized to simulate the
effect of suggested therapies on multi-omics physiology, providing a more precise selection
of intervention [126,127]. Understanding AI/CDSS intricacies and accepting their guidance
will meet resistance. Yet, it is hard to imagine that AI/CDSS will stay away from medicine
for long despite initial implementation setbacks [128].

Nanotechnology offers a unique forey into the new world of possibilities [129,130].
The most relevant and daring is the example of nanotechnology providing a new way of
delivering and maintaining anesthesia to surgical patients [129]. In this Special Issue of
JCM, an article is devoted to this prospect. Nanotechnology will be critical in creating a
modern way to improve health, deliver medications, and create brain–mind interfaces.

Genomic technologies allow for precise gene manipulation [131]. This may be critical
in subduing inflammation post-surgery by either inducing a protective mechanism or
supporting a proinflammatory one [132]. The fidelity of CRISP delivers high-resolution
gene editing, yet clinical consequences are difficult to predict with AI. mRNA-based gene
delivery may be a way to affect the expression of proteins in a safer way.

Robotics has enjoyed an increased footprint in hospital and surgical theaters. Initially,
they were used to augment pharmacy and laboratory services. With the introduction of the
DaVinci system, a new era in healthcare was delivered, demonstrating that surgery may be
less burdensome and taxing, thus resulting in more favorable outcomes [133–136]. Surgical
robotic systems are revolutionary in surgery, nonetheless, and their introduction in anesthe-
sia is relatively slow [137]. Pharmacological robots utilize a close loop, semiautonomous
system to maintain certain parameters by manipulating the delivery of anesthesia under
the supervision of an untrained professional. The first commercial system failed secondary
to a built-in assumption, as well as engineering and regulatory constraints. However, with
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the progression of AI, it is only a matter of time before a more sophisticated system will
emerge [138]. The pharmacological system provides a close loop medication administration
to achieve a certain goal such as arterial pressure or train-of-four with obvious implications
for providing hemodynamic stability during surgery. Finally, robots entered the world of
physical manipulation by assisting with intubation, regional anesthesia, and intravenous
catheter placement [139–141].

The brain–computer interface (BCI) is a system that allows for the interaction of
electronic devices with the brain. Bi-Spectral monitors can be classified as BCI devices in
terms of being non-invasive, capturing filed potential, and producing visual input [142].
Some of these interfaces are “simple devices” implanted in specific areas of the brain
aimed at the restoration/augmentation of a function [143]. These devices are of relatively
large scale, while direct neuronal-silicone nanoscale junctions are being developed to
allow for long-term implantation without compromising the device by the host’s immune
mechanisms [144]. Several applications are possible, including the delivery of drugs to
discrete areas of the brain, as compensation for function loss, or for better control of
prosthetics devices [144,145]. Furthermore, BCI may allow for new ways of inducing
anesthesia or the collaboration between providers during anesthesia services by means of
direct information exchange in the brain and the utilization of external brainlets.

Finally, a wide array of strategies to augment human brain functions is suggested
to support future anesthesiologist. In fact, many of these innovations were attempted,
including the implementation of supercomputing power, direct application of artificial
intelligence, and cloud computing, resulting in direct cognitive enhancement of the brain.
Most of these innovations are years away from fruition; however, they may dramatically
shape the world of anesthesia in the next 20 to 30 years. One of the most vexing ideas is
“transparent shadowing”, allowing humans to experience the fully immersive life of other
humans with the nano neuronal-robotic-assisted interface. It allows incredible insight into
patient experiences for more precise diagnoses [146].

6. The Market Value of the New Paradigm of an Anesthesiologist
It is incredibly difficult to predict the job market’s effect on the future skills required

by anesthesiologists to stay competitive. However, the US healthcare market is clearly
evolving toward providing more value while relentless innovation continues to offer better
care to patients.

Anesthesiologists are highly trained professionals; their job is inexplicably paired
with hospital work and the surgical theater, placing them in the center of patient care.
However, they come under increased pressure from alternative anesthesia providers, the
consolidation of the markets, and the corporatization of medicine in the US [147–149].
Propagating anesthesia-related skills outside the operating room or delivering anesthesia
by non-residency trained physicians (interventional radiologist, gastroenterologist, certified
registered nurse anesthetist, anesthesia assistant, Sedasys®) is commonplace and increasing
in frequency [138]. Some of these trends are also present outside the US market, such
that there is an increasing concern about the future of anesthesiologist-provided care in
terms of value as compared to other providers or the future delivery of anesthesia. The
current demand for anesthesia services outstrips the supply, yet increased competition may
undermine the current paradigm on which current anesthesiologist’s value relies [148,150].
Consequently, future anesthesiologists should look into the specific value they can deliver
in perioperative care.

Providing complex, expanded perioperative care aimed at the restoration of presur-
gical care utilizing several innovative technique should be the ultimate goal of future
anesthesiologist. This unique value proposition considers in-depth education, experience,
and the available skills for the physician anesthesiologist. This is consistent with the po-
sition on the future of anesthesiology expressed by professional leadership despite the
meager participation of anesthesiologists in national and regional associations. Focusing
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on long-term health restoration puts anesthesiologists in a different niche as certified nurse
anesthetists or other anesthesia providers.
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