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T1D is an autoimmune disease that occurs as a consequence 
of the destruction of insulin-producing beta cells in the islets 
of Langerhans within the pancreas1,2. This complex disease 

is characterized by atypical beta cell and immune cell interactions 
including production of beta cell autoantibodies (AAbs) and the 
immunological attack on beta cells by cytotoxic CD8+ T cells3,4.

T1D autoimmunity has been linked to poorly understood 
genetic and environmental factors. Genome-wide association stud-
ies (GWAS) have implicated multiple loci in T1D, with the major 
histocompatibility complex (MHC) class II genes as the dominant 
susceptibility determinants of this disease5. However, the precise 
cellular context through which T1D susceptibility genes cause the 
destruction of beta cells remains to be discovered. Addressing this 
question is particularly challenging because the pancreas is a het-
erogeneous organ, composed of multiple distinct cell types.

Two nontrivial constraints hamper insights into comprehensive 
identification of the pathogenic cell types in T1D: (1) the inability 
to safely perform a biopsy of the human pancreas of living donors 
and (2) the notable disease progression and beta cell destruction by 
the time patients are clinically diagnosed with T1D. Therefore, the 

majority of T1D studies have been performed on leucocytes from 
the peripheral blood, which is not the site of pathogenesis. Of late, 
the Network for Pancreatic Organ Donors (nPOD)6 and the Human 
Pancreas Analysis Program (HPAP)7 have started collecting pan-
creatic tissues from hundreds of deceased organ donors diagnosed 
with T1D. Additionally, given that many individuals with T1D har-
bour beta cell AAbs in their bloodstream before clinical diagnosis, 
nPOD and HPAP also collect samples from donors with AAbs to 
islet proteins but without a medical history of T1D, in the hope of 
elucidating early pathogenic events.

Using these initiatives, we developed a pancreatic islet atlas con-
taining an unprecedented ~80,000 cells using single-cell transcrip-
tomics, ~7,000,000 cells using cytometry by time of flight (CyTOF) 
and ~1,000,000 cells using imaging mass cytometry (IMC) in pancre-
atic tissues of human organ donors collected by the HPAP, enabling 
a resource for extensive exploration and discovery within the pan-
creatic environment. We also provide an interactive data explorer for 
simple, direct access to the single-cell transcriptomics data (https://
cellxgene.cziscience.com/collections/51544e44-293b-4c2b-8c26- 
560678423380/). Our comprehensive integrative analyses on this 
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unique dataset provide cellular and molecular insights into T1D 
pathogenesis and suggest pancreatic ductal cells may play a role in 
suppressing CD4+ T cells in pancreatic tissues.

Results
Single-cell RNA sequencing unravels novel cell states in the 
human pancreas. To unmask the molecular perturbations occurring 
in pancreatic tissues during T1D, we constructed 81,313 single-cell 
RNA-sequencing (scRNA-seq) libraries from pancreatic islets of 24 
human organ donors representing three categories: individuals with 
T1D (n = 5), those with AAbs towards pancreatic islet proteins but 
no clinical diagnosis of T1D (AAb+; n = 8) and those with neither 
AAbs nor a history of T1D (control; n = 11; Fig. 1a, Extended Data 
Fig. 1a,b and Supplementary Tables 1 and 2). The statistics related to 
reads per cell across donors demonstrated the high quality of these 
datasets (Supplementary Table 3). We filtered outlier cells, removed 
doublets and used the cell-type classifier Garnett8 (Extended Data 
Figs. 1–3) to cluster 69,645 high-quality cells using TooManyCells9 
(Fig. 1b,c). The resultant classification was confirmed both by 
canonical gene marker expression for each cell type and by transfer-
ring cluster labels from a previous single-nucleus RNA-seq dataset 
consisting of pancreatic islets10 to our datasets (Fig. 1c and Extended 
Data Fig. 4a–c).

Notably, clustering was clearly driven by cell type, and not by 
confounding factors such as AAb status, age, body mass index, 
phenotypic group or other factors (Extended Data Fig. 2d–g, 
Supplementary Fig. 1a–k and Supplementary Fig. 2a–l). Additional 
evidence for the lack of technical noise stems from the observa-
tion that cell-type clustering was preserved when donors from 
T1D, AAb+ and control groups were independently clustered 
(Supplementary Fig. 3a–f).

Considering the reported abnormalities of the exocrine pancreas 
in T1D11 and recent efforts indicating the enrichment of sequence 
polymorphisms associated with T1D within the regulatory elements 
of exocrine cells12, we next examined the relationship between 
pancreatic endocrine and ductal cells. First, we subsetted and 
re-analysed the endocrine and ductal cells to achieve a more gran-
ular clustering (Fig. 1d). After reclustering, the major cell types—
alpha, beta, delta, epsilon, pancreatic polypeptide (PP), ductal and 
acinar—were easily discernible (Fig. 1d and Extended Data Fig. 4d). 
In instances where there were two transcriptionally distinct canoni-
cal cell types (that is, Beta-1 and Beta-2), differential gene expres-
sion analysis between populations provided further insights into 
the underlying molecular differences (Supplementary Tables 4–7). 
For example, cells in the Beta-2 cluster expressed higher levels of 
stress response genes such as NPTX2 and GDF15 when compared to 
those in the Beta-1 cluster. The activation of stress response genes in 
beta cells in various hyperglycaemic states has been reported previ-
ously13–18. Notably, the comparison of cells in the two ductal clusters 

revealed that while cells in the Ductal-1 cluster were enriched for 
transcription factors (TFs) associated with the endocrine cell fate 
(that is, PDX1 and NKX6-1), those in the Ductal-2 cluster expressed 
acinar TFs (that is, PTF1A and GATA4).

A substantial number of cells (4,001) were not included in 
these canonical cell-type clusters, but rather formed their own 
transcriptionally distinct group on the dendrogram. This cluster 
constituted 5.7% of all profiled cells, with a mixture of cellular clas-
sifications and expression of canonical gene markers. We labelled 
these cells as ‘hybrid’ cells (Fig. 1d and Extended Data Fig. 4d). 
Notably, the gene expressed most highly and consistently in hybrid 
cells was INS, and a comprehensive examination of the cells mak-
ing up this cluster ruled out the possibility of them being doublets 
(Extended Data Figs. 1d and 2a–e). To further validate the most 
closely related cell types to these non-canonical cells, we used a 
label transfer strategy using a reference pancreatic islet scRNA-seq 
dataset19. We corroborated the assignment of multiple cell types 
including beta cells and alpha cells to these hybrid cells (Extended 
Data Fig. 4e,f). Cells equivalent to hybrid cells had been detected 
earlier19–21 and were most recently documented in the adult pan-
creas of mice and humans20–23. Nonetheless, we excluded hybrid 
cells for further analysis to eliminate any cells captured potentially  
as doublets.

Because immune cell-mediated destruction of viable pancre-
atic cells is the major pathogenic feature of T1D, we examined the 
intrapancreatic immune cells profiled by scRNA-seq in detail. First, 
we subsetted and reclustered the cells constituting the ‘immune’ 
cluster from the comprehensive tree (Fig. 1c) and found that this 
population also contained stellate (RGS5 high) and Schwann (PLP1 
high) cells along with immune cells (PTPRC high; Supplementary 
Fig. 4a,b). Using the Immunological Genome Project (ImmGen) 
cell-type signatures24, we further found that the gene signatures of 
antigen-presenting cells (APCs) such as macrophages, for example, 
CD68, SPI1, CD14 and CD16, were most frequently expressed in the 
immune cell subset (Supplementary Fig. 4b,c), suggesting that these 
cell types constitute the majority of the identified immune cells that 
are collected and cultured along with pancreatic islets.

Studies demonstrating that regulatory elements of immune cells 
harbour the largest number of risk variants associated with T1D12,25 
imply that immune cells are more susceptible to gene dysregulation 
compared with other cell types in T1D. To quantify the link between 
genetic predisposition associated with T1D and cell-type-specific 
gene expression, we used a genetic prioritization model26,27 and 
examined the enrichment of sequence variation associated with 
T1D12 across our annotated cell types (Supplementary Fig. 4d). 
As a control, we also examined sequence variation associated with 
asthma28,29 and T2D28,29. This analysis revealed that immune cells 
were the top cell type associated with T1D and asthma, which are 
both immune-mediated disorders. In contrast, beta cells were the 

Fig. 1 | Discernment of human pancreatic cell types using single-cell RNA sequencing. a, The transcriptome of single cells from pancreatic islets of 
three donor types (healthy control donors, AAb+ donors and donors with T1D) was ascertained using the 10x Genomics platform. b, Pie chart displaying 
the proportion of cells constituting each donor group. c, TooManyCells dendrogram visualization and clustering of all cells. Cells begin at the start pin 
symbol, and are then partitioned based on transcriptional similarities and differences. The colour within the branches indicates the proportion of the cells 
that are classified by the Garnett cellular classification tool (Supplementary Table 17). Each bifurcation denotes significant transcriptional differences 
between the two cell groups. Pie charts at the end of the branches display the breakdown of Garnett cellular classification of cells within that terminal 
cluster. Highlighted areas or dashed lines surrounding particular clusters of cells with labels define cell types based on Garnett cellular classifications and 
canonical gene expression. Branch thickness and pie chart size is proportional to cell number. Branch length is not indicative of any factor, but is merely a 
means by which to display cells within a defined space. Beta cells (INS high), alpha cells (GCG high), delta cells (SST high), PP cells (PPY high), epsilon cells 
(GHRL high), acinar cells (CPA1 high), ductal cells (KRT19 high), endothelial cells (VWF high), stellate cells (RSG10 high) and immune cells (PTPRC, also 
known as CD45 or leucocyte common antigen, high). Graphs represent the percentage of total cells. d, Dendrogram visualization and clustering of ductal 
and endocrine cells. Highlighted regions surrounding particular clusters of cells with labels define cell types based on Garnett cellular classifications and 
canonical gene expression. e,f, Group donor type projected across the dendrogram visualization and clustering of all cells from c (e) or of endocrine and 
ductal cells from d (f). Pie charts at the end of the branches display the breakdown of donor type within that terminal cluster. g, Bar graph displaying the 
proportion of cells from each donor group for all major pancreatic cell types. P values were calculated by the chi-squared test. *P < 2.2 x 10−16.
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top cell type associated with T2D (Bonferroni significance thresh-
old of PS-LDSC < 0.05), in agreement with recent reports demonstrat-
ing that risk variants for T2D are enriched in active cis-regulatory 

elements of beta cells30. Together, the genetic prioritization model 
corroborated that gene expression in immune cells is affected by 
T1D-associated sequence variation.
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In addition to successful identification of the major endo-
crine and exocrine cell types and pancreatic immune cells, we 
also observed that the overall proportion of these cell types was in 
accordance with previous work20,31–35. Each of the major cell types 
made up cells from the three donor groups with varying propor-
tions (Fig. 1e–g, Extended Data Fig. 4g,h and Supplementary Figs. 
4e and 5a,b). As expected, we found that there was a lower propor-
tion of beta cells in the T1D cohort compared to the AAb+ or con-
trol groups (Supplementary Fig. 5a,b). Conversely, both acinar and 
ductal cells constituted a higher portion in the T1D cohort, reflect-
ing the difficulty of isolating high-purity islets from T1D donors. 
Furthermore, within major cell clusters, there were varying degrees 
of separation based on donor group, which is to be expected due 
to likely transcriptomic differences among the three donor states 
(Fig. 1e,f and Supplementary Fig. 4a). Notably, Ductal-1 cells clearly 
separated into distinct T1D-enriched and control-enriched groups 
(Fig. 1f). Taken together, our data indicate that transcriptomic dif-
ferences among cell types and not technical biases drive the sepa-
ration of major cellular clades, and that the donor state further 
segregates within cell types.

Comparison of endocrine and exocrine cells in AAb+ and T1D 
donors. We next compared transcriptomic divergence of AAb+ and 
T1D cells from controls (Fig. 2a). To perform differential expres-
sion analysis between donor groups, we used two complementary 
analytical strategies: (1) grouping individual cells from different 
donor groups together (Supplementary Tables 8–10) or (2) per-
forming pseudo-bulk analysis for each donor (Supplementary  
Tables 11–13). Plotting the average expression levels of the top three 
differentially expressed genes determined by the first strategy across 
donor groups confirmed that the predicted differential expression 
is not driven by one or a few donors (Supplementary Fig. 6). As 
pseudo-bulk methods cause cells from individuals with fewer cells 
to be more heavily weighted36, we performed further analysis using 
genes detected based on the first strategy. Generally, the degree of 
overlap between dysregulated genes and pathways in AAb+ and 
T1D states were cell-type dependent (Fig. 2b–e, Supplementary  
Figs. 7–10 and Extended Data Fig. 5a–c). However, some path-
ways were found to be commonly dysregulated in multiple cell 
types across T1D and AAb+ donors, including ‘apoptotic signalling’, 
various protein folding ontologies, various viral-related ontologies, 
‘autophagy’, ‘inflammatory pathways’ and ‘stress response’.

We next examined the transcriptional changes in the two popu-
lations of annotated beta cells, Beta-1 and Beta-2. A large number 
of genes were downregulated in T1D (9,512 genes) and AAb+ (3,666 
genes) Beta-1 cells compared to controls, many of which overlapped 
(2,896 genes, 28%; P < 2.2 × 10−16) between the two donor groups 
(Fig. 2b and Supplementary Fig. 7a). Notable pathways that were 
frequently downregulated in Beta-1 cells of AAb+ and T1D donors 
were immune/stress response and apoptosis-related pathways  
(Fig. 2b and Supplementary Fig. 7a). Given that beta cells are 

destroyed by immune cells in T1D, it is possible that these remain-
ing Beta-1 cells were not targeted by the immune system. It is also 
possible that these beta cells are able to survive and function after 
immunological attack by decreasing immune signalling and apop-
totic signalling via downregulation of the TP53 pathway (Fig. 2b 
and Supplementary Fig. 7a), which is notable given that upregula-
tion of the TP53 pathway and an associated increase in susceptibil-
ity to apoptosis has been observed in T1D37,38. Hence, these results 
suggest that cells from AAb+ donors in this beta cell population 
either are spared from destruction or use similar protective molecu-
lar mechanisms to enhance survival and function, which is further 
supported by the fact that the expression of immune checkpoint 
protein PDL-1 (CD274) is upregulated in AAb+ Beta-1 cells com-
pared to those from controls.

The Beta-2 cell population displayed a small proportion of 
genes (4%; 283 genes; P < 2.2 × 10−16) with elevated expression in 
both T1D and AAb+ cells when compared to controls (Fig. 2c and 
Supplementary Fig. 7b). Additionally, an even smaller number of 
genes were downregulated in T1D and AAb+ Beta-2 cells when 
compared to controls. Nonetheless, several pathways were found to 
be commonly dysregulated across both donor groups. Two inter-
related pathways dysregulated in both T1D and AAb+ Beta-2 cells, 
namely ‘chaperone-mediated protein folding’ and ‘response to topo-
logically incorrect protein’, suggest a dysregulation of protein fold-
ing, an essential function for cellular homeostasis. Additionally, the 
‘tumour necrosis factor/nuclear factor-kappa B signalling’ pathway, 
which has been implicated as an important regulator of autoimmune 
processes39, was significantly downregulated across the two donor 
groups in the Beta-2 cell population (Fig. 2c and Supplementary 
Fig. 7b). Together, our differential expression analyses extend 
earlier studies on the pathways triggering beta cell dysfunction  
and death.

Given the clear segregation of ductal cell populations by donor 
group, we next examined the transcriptional changes in the two 
populations of ductal cells, Ductal-1 and Ductal-2. A large number 
of genes were upregulated in T1D (7,175 genes) and AAb+ (4,371 
genes) Ductal-1 cells when compared to controls, a significant num-
ber of which were common between the two donor groups (Fig. 2d 
and Supplementary Fig. 8a; 2,283 genes; 25%; P value < 1 × 10−12). 
Notable induced pathways upregulated in T1D and AAb+ cells are 
associated with apoptosis, stress and immune response (Fig. 2d and 
Supplementary Fig. 8a). In the ductal-2 cell population, although 
many upregulated genes were observed in T1D (6,841 genes), there 
were not nearly as many upregulated genes in AAb+ cells (1,106 
genes) when compared to controls (Fig. 2e and Supplementary  
Fig. 8b). Furthermore, in the T1D and AAb+ Ductal-2 cell popula-
tion, there was a modest but significant overlap between upregulated 
genes (Fig. 2e and Supplementary Fig. 8b; 11%; P value < 1 × 10−12). 
Nevertheless, various gene pathways were found to be signifi-
cantly upregulated across both ductal populations (Fig. 2d,e and 
Supplementary Fig. 8a,b). Taken together, these findings suggest 

Fig. 2 | AAb+ and T1D donors have both common and distinct transcriptomic changes in endocrine and exocrine cell types. a, For each cell type, two 
pairwise differential comparisons were carried out: (1) T1D versus control (referred to as ‘T1D upregulated’ (T1D/control) or ‘T1D downregulated’  
(control/T1D)) and (2) AAb+ versus control (referred to as ‘AAb+ upregulated’ (AAb+/control) or ‘AAb+ downregulated’ (control/AAb+)). T1D upregulated 
genes were then compared to AAb+ upregulated genes to find commonly upregulated genes, and subsequently commonly upregulated gene ontologies and 
pathways, across these two donor groups; this exact same approach was carried out for downregulated genes as well. b–e, Left, Venn diagrams indicate 
the numbers of upregulated and downregulated genes, as well as overlapping genes, across the two donor states, for each cell type. Right, bar graphs 
displaying notable gene ontologies that are shared across disease states for upregulated and downregulated genes. The P values presented are the results 
of hypergeometric cumulative distribution function tests (one-tailed test for overrepresentation). f, Transcriptional differences between cells from T1D and 
AAb+ donors were determined by directly comparing T1D to AAb+ cells to generate lists of differentially expressed genes that are enriched in T1D cells or 
AAb+ cells, and enriched gene ontology pathways were discovered from these differential gene lists. g–j, Left, circles indicate the numbers of genes that are 
‘T1D enriched’ or ‘AAb enriched’, for each cell type. Right, bar graphs displaying notable gene ontologies that are enriched for each donor state.

NATURE METABOLISM | VOL 4 | FEBRUARY 2022 | 284–299 | www.nature.com/natmetab 287



ARTICLES NATURE METABOLISM

that although AAb+ donors maintain normoglycaemia, significant 
transcriptional dysregulation is occurring in AAb+ endocrine and 
exocrine cells that is highly similar to that in T1D.

Next, we directly compared T1D to AAb+ cells (Fig. 2f and 
Supplementary Tables 8–13). For both groups of beta cells, genes 
associated with autophagy, stress response and immune-related  
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pathways were activated in AAb+ cells compared to T1D cells (Fig. 2g,h  
and Supplementary Fig. 7a,b). Although similar pathways were 
upregulated in AAb+ Beta-1 and Beta-2 cells, apoptotic and adaptive 
immune system signalling were only upregulated in Beta-2 AAb+ 
cells. These data suggest that this population is undergoing cell 
death, indicated by the upregulation of adaptive immune cell genes 
and BCL10. In ductal cell populations, there was a larger number of 
upregulated genes in T1D (Fig. 2i,j and Supplementary Fig. 8a,b).  
Notably, apoptotic, metabolic, protein folding and immune 
responses were activated in T1D ductal cells in comparison to AAb+ 
ductal cells (Fig. 2i,j and Supplementary Fig. 8a,b). Remarkably, 
interferon-α and interferon-β pathways, known to be critical in T1D 
disease pathogenesis40–42, were significantly elevated in T1D ductal 
cells compared to either control or AAb+ ductal cells (Extended Data 
Fig. 5d). Our molecular evidence supports more recent findings of 

exocrine abnormalities in T1D11,12, positioning these exocrine cells 
in disease pathogenesis. Taken together, AAb+ cells exhibit signifi-
cant transcriptional changes like those observed in T1D.

Beta cell gene signature is correlated with the anti-glutamic acid 
decarboxylase titre. Pancreatic tissues from AAb+ donors col-
lected by HPAP can potentially offer a unique insight into the initial 
molecular events of T1D pathogenesis. A landmark study following 
patients from birth determined that ~69% of children with multi-
ple islet AAbs progressed to T1D after islet AAb seroconversion43. 
Among HPAP donors, only one donor with no history of T1D 
expressed two islet AAbs, while the other normoglycaemic AAb+ 
donors were anti-glutamic acid decarboxylase (GAD) AAb positive. 
Considering that the longitudinal study of children also revealed 
that the risk of diabetes in children who had no islet AAbs was 0.4% 
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Fig. 3 | The gene signature of Beta-1 cells in GAD+ donors is correlated with donors’ anti-GAD AAb titres. a, Transcriptional outputs of Beta-1 cells 
positively correlate with the anti-GAD AAb titre in AAb+ donors. In every annotated cell type, we searched for genes whose expression level correlated with 
anti-GAD AAb levels in normoglycaemic GAD+ donors (R2!>!0.99 and P value!<!0.05). b, Plotting the average expression levels of cells from each GAD+ 
donor for the top 1,473 genes in Beta-1 cells with statistically significant correlation with the GAD titres corroborated our query. The total number of cells 
was 6,904. Box-and-whisker plots of the given values show the lower 25th percentile (Q1), interquartile range (IQR), the median (Q2), the upper 75th 
percentile (Q3) and the minimum (minimum value in the data, Q1!−!1.5!×!IQR and maximum (maximum value in the data, Q3!+!1.5!×!IQR) values. The dots 
represent potential outliers. c, A gene ontology analysis in 1,473 genes related to Beta-1 cells using Metascape highlighted the relevance of endocytosis, 
protein processing in the ER and MapK signalling pathway in Beta-1 cells. d, Comparison of the cell clustering of the one normoglycaemic AAb+ donor 
expressing two AAbs (IA-2 and ZnT8) with GAD+ donors using clumpiness revealed the distinct transcriptional signature of the double AAb-expressing 
AAb donor and the single AAb-expressing GAD+ donors. Clumpiness is a measure for finding the level of aggregation between labels distributed among the 
leaves of a hierarchical tree and extensively measures the relationships between metadata. Here, each leaf of the dendrogram contains a collection of labels 
(different AAb donor group). The more the labels group together within the dendrogram, the higher the clumpiness value. This analysis also demonstrates 
the overall similarity of GAD+ donors, which modestly displayed GAD-level-dependent cell co-segregation.
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in contrast to 14% for children expressing a single islet AAb43, we 
next focused on the transcriptional landscapes of islets in GAD+ 
donors and queried for cell types whose transcriptional signature 
strongly correlated with the GAD titre among the GAD+ donors. 
We devised a strategy to determine the number of genes whose 
expression levels significantly correlated with the GAD titre across 
GAD+ donors, either positively or negatively. However, we detected 
only a positive correlation of statistical significance between gene 
expression levels and GAD titres. Strikingly, the top cell type with 
the largest number of genes (1,473) that were significantly corre-
lated with the GAD titre in AAb+ donors was Beta-1 cells (Fig. 3a 
and Supplementary Table 14). Plotting the average expression lev-
els of cells from each GAD+ donor for these 1,473 genes in Beta-1 
cells confirmed this finding (Fig. 3b). To define the identity of genes 
with an increase in their expression levels correlating with GAD 
levels, we performed gene ontology analysis. Our approach high-
lighted the relevance of endocytosis, lysosome, protein process-
ing in endoplasmic reticulum (ER) and MAP kinase signalling in 
Beta-1 cells13–18 (Fig. 3c). Additional comparison of the cellular clus-
tering of the one AAb+ donor expressing two AAbs (IA-2 and ZnT8; 
AAb+ no. 5; HPAP043) with GAD+ donors across the AAb+-specific 
clustering (Supplementary Fig. 3b) or all donor-type clustering  
(Fig. 1c) revealed the distinct transcriptional signature of the dou-
ble AAb-expressing AAb+ donor in comparison to single AAb+ 
GAD+ donors (Fig. 3d and Supplementary Fig. 2l). This analysis 
also revealed an overall similarity of GAD+ donors, which modestly 
displayed GAD-level-dependent cell co-segregation (Fig. 3d and 
Supplementary Fig. 2l). Together, our unbiased strategy puts for-
ward Beta-1 cells as the top cell type whose transcriptional outputs 
correlate with anti-GAD levels, suggesting the dynamic landscape 
of transcriptome in normoglycaemic AAb+ individuals.

Major histocompatibility complex class II expression is enriched 
in T1D ductal cells. The major genetic susceptibility determinants 
of T1D have been mapped to the MHC class II genes44,45. We there-
fore sought to determine which cell types or donor states dispro-
portionately express genes in this pathway. Using our scRNA-seq 
data, we found that genes associated with MHC class II activity were 
enriched in immune, endothelial and ductal clusters (Extended 
Data Fig. 6a–d). The lack of enrichment of the immune cell marker 
PTPRC or other genes associated with immune cells across the endo-
crine and ductal dendrogram supports the notion that the enrich-
ment of MHC class II-associated genes in ductal cells is not due to 
immune cell contamination (Extended Data Fig. 4a,d and Extended 
Data Fig. 6g). Next, we evaluated the expression of HLA-DPB1, an 
MHC class II gene associated with T1D risk, and KRT19, a ductal 

cell marker, across ductal and endocrine cell types. We identified five 
clusters with high HLA-DPB1 and high KRT19 expression, which 
accounted for 10.9% of all cells (7,588 cells; Fig. 4a,b and Extended 
Data Fig. 6e,f). Strikingly, cells from T1D donors disproportionately 
contributed to this population of MHC class II-expressing ductal 
cells (Fig. 4c; P value < 2.2 × 10−16). This observation is not due to 
sampling issues pertaining to the difficulty of isolating high-purity 
islets from T1D donors. This conclusion is supported by the fact 
that even though the Ductal-1 cell population consists of very simi-
lar numbers of control and T1D donor ductal cells (4,217 and 4,154 
cells, respectively), there is a marked difference in the percentage of 
control versus T1D MHC class II-expressing Ductal-1 cells, at 35% 
and 91%, respectively (Fig. 4c; P value < 2.2 × 10−16).

T1D ductal cells assume the transcriptional identity of dendritic 
cells. Dendritic cells (DCs) are among the major professional APCs 
expressing MHC class II proteins with the salient function to ingest 
antigens and present processed epitopes to T cells, thereby regulat-
ing adaptive immune responses by activating or suppressing T cells46. 
Considering that MHC class II proteins are required for antigen 
presentation in DCs, we next evaluated whether there are any other 
similarities between transcriptional profiles of T1D ductal cells 
and conventional DCs. Hence, we performed gene-set-enrichment 
analysis (GSEA) using gene signatures of DC subtypes, which were 
recently defined using scRNA-seq profiling in human blood47. 
Remarkably, we found a highly significant enrichment of the DC1 
gene signature in Ductal-2 cells of T1D donors, while no other 
annotated islet cell type revealed such significant and strong enrich-
ment of gene signatures associated with DC subtypes (Fig. 4d and 
Extended Data Fig. 7a). DC1 corresponds to the cross-presenting 
CD141/BDCA-3+ cDC1, which is best marked by CLEC9A47. Of 
note, the enrichment of other DC subtype gene signatures in T1D 
ductal cells was not statistically significant (Extended Data Fig. 7a).

To activate T cells, DCs are required to express both MHC class 
II proteins and co-stimulatory proteins CD80 and CD86 (ref. 46). 
In the absence of CD80 and CD86, antigen presentation by DCs 
can lead to tolerance and T cell suppression48. We found that CD80 
and CD86 were not expressed in T1D ductal cells, suggesting a 
lack of co-stimulatory signal in these DC-like ductal cells in T1D 
donors (Fig. 4e). Additionally, the inhibitory receptor VSIR, which 
negatively regulates T cell responses49, showed higher expression 
in T1D ductal cells compared with control ductal cells (Extended 
Data Fig. 7b). Moreover, the ductal cells in T1D expressed high lev-
els of interferon genes including ICAM1, ISG20 and IRF7 (Fig. 4f 
and Extended Data Fig. 5d). Hence, our single-cell transcriptional 
profiling detected an enrichment of ductal cells with transcriptional 

Fig. 4 | Single-cell RNA-seq profiling enables the identification of MHC class II-expressing ductal cells with transcriptional similarities to dendritic cells 
in T1D. a, Left top, dendrogram visualization of coexpression of HLA-DPB1 and KRT19 transcripts in individual cells by scRNA-seq across the ductal and 
endocrine dendrogram from Fig. 1d. Left bottom, pie chart demonstrating HLA-DPB1+KRT19+ cells as a percentage of the total cells. Right, magnified view 
of the clusters of cells with a high percentage (25% or greater) of HLA-DPB1+KRT19+ cells with HLA-DPB1 and KRT19 status displayed across these clusters 
(outlined in red dashed lines) and neighbouring clusters of cells. Cells begin at the start pin symbol and from there are partitioned based on similarities 
and differences in gene expression. b, Top, dendrogram visualization of cellular classification status across the magnified clusters of cells with a high 
percentage (25% or greater) of HLA-DPB1+KRT19+ cells (outlined in red dashed lines) and neighbouring clusters of cells. Bottom, pie chart displaying the 
relative proportion of cellular classification status of HLA-DPB1+KRT19+ cells. The P value was generated by the chi-squared test. c, Top left, dendrogram 
visualization of donor groups across the magnified clusters of cells with a high percentage (25% or greater) of HLA-DPB1+KRT19+ cells (outlined in red) 
as well as neighbouring clusters of cells. Top right, pie charts displaying the relative proportion of HLA-DPB1+KRT19+ cells in control (top) or T1D (bottom) 
Ductal-1 cells. The P value was generated by Fisher’s exact test. Bottom left, pie charts displaying the relative proportions of HLA-DPB1+KRT19+ cells by 
donor group. The P value was generated by the chi-squared test. Bottom right, boxplots displaying the HLA-DPB1+KRT19+ cell percentage of total cells 
per individual across donor groups (24 total donors; 11 controls, 8 AAb+ and 5 T1D). A box-and-whisker plot is depicted with the box extending from the 
25th to 75th percentiles, with the line in the middle representing the median. Whiskers extend from the minimum to the maximum values, all data points 
are shown, and the P value reflects the result of the Kruskal–Wallis test. d, T1D ductal cells are transcriptionally similar to tolerogenic DCs. GSEA was 
performed using gene signatures of DC subtypes, which were recently defined using scRNA-seq in human blood47. The DC1 gene signature was enriched 
in Ductal-2 cells but not Beta-1 cells of T1D donors. e, The co-stimulatory proteins CD80 and CD86 were not expressed in T1D ductal cells. f, Ductal cells of 
T1D donors express interferon-associated genes including ISG20, ICAM1 and IRF7 compared with ductal cells of control donors. ES, enrichment score.
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similarities to tolerogenic DCs. These results imply an unappre-
ciated role for T1D ductal cells potentially acting as decoy recep-
tors in an apparent attempt to deactivate CD4+ T cells by inducing  
tolerance during immune invasion of the pancreas.

Multimodal confirmation of major histocompatibility complex  
class II+ ductal cells. We next sought to corroborate our 
transcriptomic-based finding of MHC class II expression on duc-
tal cells in T1D by using additional experimental modalities—two 
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high-throughput technologies, CyTOF and IMC—in addition 
to immunofluorescence experiments. Our integrative approach 
with CyTOF combined ~7,000,000 live, cultured single cells from 
12 donors, which had also been profiled by scRNA-seq (4 con-
trol, 4 AAb+ and 4 T1D donors). This additional modality scaled 
our analytical strategy to millions of cells, measuring the expres-
sion levels of 35 proteins (Supplementary Table 15). As the strat-
egy we used to annotate cells using scRNA-seq8 is not applicable 
to CyTOF measurements, we developed a new machine-learning 
method to annotate cells based on canonical markers (Extended 
Data Fig. 8a–e). Using CyTOF, we identified a population of duc-
tal cells expressing HLA-DR, an MHC class II protein encoded by 
the human leucocyte antigen (HLA) complex (Fig. 5a). Notably, we 
found that cells from T1D donors constituted the largest percent-
age of this cluster, in agreement with the findings from scRNA-seq 
(Fig. 5b; P value < 1 × 10−6). Furthermore, HLA-DR-expressing 
ductal cells made up a larger percentage of total cells across indi-
vidual T1D donors compared with control or AAb+ donors  
(Fig. 5c; P value = 0.00507). A two-parameter (cytokeratin and 
HLA-DR) analysis on all single cells analysed by CyTOF further 
confirmed the presence of this double-positive population across 
multiple donors (Fig. 5d and Extended Data Fig. 8f,g). Notably, 
these ductal cells did not express CD45, the hallmark of leucocytes 
(Fig. 5e). The identification of ductal cells with MHC class II mol-
ecules using both scRNA-seq and CyTOF strongly corroborates the 
increased frequency of this population in T1D.

Having identified a population of ductal cells with MHC class 
II molecules enriched in T1D donors by two experimental modali-
ties in our integrative analysis, we next sought to study these duc-
tal cells in pancreatic tissues independent of islet culture by means 
of anatomical and spatial features in pancreatic tissues by IMC50. 
While measurements with CyTOF and scRNA-seq assays rely on 
the profiling of dissociated cells, IMC retains spatial information 
by analysing tissues fixed directly from the native human pancreas. 
We again amended our analytical pipeline with an optimized cell 
annotation approach for the IMC technology. We harnessed the 
expression levels of 33 proteins quantified by IMC in more than 1 
million cells across 143 tissue slides from 19 donors, including 11 
individuals not previously assessed by scRNA-seq or CyTOF for an 
independent validation of our findings (Supplementary Table 16). 
This analysis confirmed that MHC class II-expressing ductal cells 
were predominately present in T1D donors (Fig. 5f–h and Extended 
Data Fig. 9a–e). MHC class II-expressing ductal cells were located 
in all regions of the pancreas (Extended Data Fig. 10a). Remarkably, 
the frequency of CD11B+ myeloid cells annotated by our analytical 
strategy in both CyTOF and IMC measurements was highly cor-
related with the frequency of MHC class II-expressing ductal cells 
(Extended Data Fig. 10b,c). Immunofluorescence staining in native 

pancreatic tissues, followed by confocal microscopy, verified the 
existence of MHC class II-expressing cells in a control and a T1D 
donor (Fig. 5i). We identified MHC class II-expressing ductal cells 
in both donors; however, there was a pronounced enrichment of 
MHC class II-expressing ductal cells in the T1D pancreas (Fig. 5i). 
Representative examples of IMC measurements in tissues also con-
firmed this finding (Fig. 6). Finally, cellular neighbourhood analysis 
in pancreatic tissues established that HLA-DR-expressing ductal 
cells were surrounded by CD4+ T cells and myeloid cells includ-
ing CD11B+ DCs (Extended Data Fig. 10d–f; P value < 1 × 10−2). 
Together, our multimodal single-cell measurements from transcrip-
tomics to spatial proteomics in ductal cells suggest that ductal cells 
are transcriptionally similar to tolerogenic DCs, implying an unap-
preciated role of these exocrine cells in modulating T cell activity in 
long-term T1D.

Discussion
Using three high-throughput single-cell technologies, we provided 
a comprehensive atlas of millions of cells using integrative multi-
modal analyses as a molecular microscope to investigate cellular 
diversity in the pancreas of T1D, AAb+ and nondiabetic human 
organ donors. These data, including paired samples across technol-
ogies, enable an exploration of the pancreatic environment in both 
healthy and disease states.

We found that AAb+ donors exhibit similar transcriptional 
changes as T1D donors in various endocrine and exocrine cells, 
despite these donors retaining normoglycaemia. Remarkably, the 
unique collection of GAD+ donors in the HPAP database allowed 
us to delineate Beta-1 cells as the primary cell type whose tran-
scriptional outputs correlate with anti-GAD titres, suggesting the 
existence of dynamic transcriptional landscape in AAb+ individuals. 
Although it is impossible to discern at present whether these tran-
scriptional changes are contributing to or are by-products of disease 
pathogenesis, the mere discovery of molecular phenotypic changes 
in the pancreatic cells of AAb+ individuals should advance our 
understanding of early pancreatic perturbations occurring in T1D.

The most striking finding arising from our study is that cells of 
the exocrine compartment show transcriptional and gene onto-
logical changes in the T1D disease setting. Ductal cells from T1D 
donors, in contrast with those from nondiabetic or AAb+ donors, 
express high levels of MHC class II and interferon pathways, are 
surrounded by CD4+ T cells and DCs and are transcriptionally 
similar to tolerogenic DCs. Although, to our knowledge, our study 
represents the first report of ductal cells expressing MHC class II 
proteins in the T1D context, this finding is in accordance with pre-
vious literature documenting an elevation of immune cells in the 
exocrine pancreas of T1D donors35,42,51 and regulation of MHC 
class II genes by the interferon signalling pathway52. Moreover, the 

Fig. 5 | Three single-cell resolution protein-based approaches corroborate the existence of MHC class II-expressing ductal cells in T1D. a, Dendrogram 
visualization of coexpression of HLA-DR and cytokeratin protein coexpression in single cells analysed with CyTOF. b, Pie chart displaying HLA-DR+ 
cytokeratin+ cells and the relative proportions of each donor group from the CyTOF data. The P value was calculated by the chi-squared test. c, Boxplots 
displaying the HLA-DR+ cytokeratin+ cell percentage of total cells per individual across donor groups derived from the CyTOF data (P value!=!0.00507; 
number of donors: 4 AAb+, 4 control and 4 T1D). The box-and-whisker plot shows the quartiles, minimum non-outlier (calculated by Q1!–!1.5!×!IQR), 
25th percentile/lower quartile Q1, 50th percentile/median Q2, 75th percentile/upper quartile Q3, maximum non-outlier (calculated by Q3!+!1.5!×!IQR) 
of the variable (hybrid percentage of total cells per individual), while the whiskers extend to show the rest of the distribution, except for points that 
are determined to be ‘outliers’ (dots outside whiskers) using a method that is a function of the IQR. d, Two-parameter CyTOF analysis of HLA-DR and 
cytokeratin protein expression in single cells from T1D donor 4 (HPAP028) and T1D donor 5 (HPAP032). e, CD45 (PTPRC) expression levels in HLA-DR+ 
cytokeratin+ and HLA-DR+ cytokeratin− single cells. f, Dendrogram visualization of the coexpression of HLA-DR and cytokeratin proteins in single cells 
analysed by IMC. g, Pie chart displaying HLA-DR+ cytokeratin+ cells and the relative proportions of each donor group from the IMC data. The P value was 
calculated by chi-squared test. The P value shows 0.000 by both chi-square function from scipy.stats (Python) for the observed frequency array (34,983, 
3,711, 4,635):(T1D, AAb+, control) and cannot provide an exact P value. h, Boxplots displaying HLA-DR+ cytokeratin+ cells as a percentage of total cells 
per individual across donor groups from the IMC data (P value!=!1 × 10−16; number of donors: 7 AAb+, 5 control, 4 T1D). The P value was obtained from a 
one-way analysis of variance (ANOVA) test. i, Representative confocal microscopy images from the pancreas of a T1D donor (top) and a control donor 
(bottom) displaying HLA-DR+ cytokeratin+ labelled by immunofluorescence (IF; control, n!=!3; T1D, n!=!2).
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expression of MHC class II proteins in pancreatic ductal adenocar-
cinomas has been reported53. Recent studies also support a role for 
epithelial cells as facultative, nonprofessional APCs in the gut and 
lung54,55, and expression of MHC class II proteins in non-lymphoid 
cells in the pancreas56 has been shown. We posit that these cells 
exhibit a tolerogenic response to chronic T cell infiltration in pan-
creatic tissues and appear to be an ultimately unsuccessful attempt 
of the pancreas to limit the adaptive T cell response responsible for 
destroying beta cells. While this interpretation is strongly supported 
by our multimodal data analysis in human pancreatic tissues, the 
limitation of our study relates to lack of functional validation of this 
hypothesis. Our future efforts utilizing mouse genetics will enable 
us to further validate the functional relevance of these findings. 
Together, our study provides a unique resource of millions of cells 
of the pancreatic environment and unmasks exocrine ductal cells as 
potential responders to immune infiltration in T1D.

One technical question under intense debate in the scRNA-seq 
community is how to perform differential expression analysis. 
Squair et al.57 compared differential expression analysis tech-
niques in scRNA-seq datasets, utilizing bulk RNA-seq data as the 
ground-truth for measuring false positives. They concluded that 
predictions using the pseudo-bulk approach are the most similar to 
predictions from bulk RNA-seq data. Contradicting Squair et al.57, 
Zimmerman et al.36 published a study comparing techniques for 
performing differential expression analysis in scRNA-seq datasets 
and argued that pseudo-replication is acknowledged as one of the 
most common statistical mistakes in the scientific literature. Instead, 
they proposed the use of computationally expensive generalized lin-
ear mixed models for the analysis of scRNA-seq data. In summary, 
the contradictory results of these two studies reveal lack of consen-
sus on alternative differential expression methods. Aware of these 
challenges in the analysis of scRNA-seq data, we took advantage of 
multimodal measurements such as IMC, CyTOF and immunohis-
tochemistry to assess the reproducibility of our findings related to 
ductal cells in T1D donors across independent experimental assays.

Methods
Experimental model and donor details. Pancreatic islets were procured by the 
HPAP consortium (RRID: SCR_016202; https://hpap.pmacs.upenn.edu/), part of 
the Human Islet Research Network (https://hirnetwork.org/), with approval from 
the University of Florida Institutional Review Board (IRB no. 201600029) and the 
United Network for Organ Sharing. A legal representative for each donor provided 
informed consent before organ retrieval. For T1D diagnosis, medical charts were 
reviewed and C-peptide levels were measured in accordance with the American 
Diabetes Association guidelines (American Diabetes Association 2009). All donors 
were screened for AAbs before organ collection, and AAb positivity was con!rmed 
a"er tissue processing and islet isolation.

Organs were processed as previously described19,35. Supplementary Tables 1 and 
2 summarize donor information. Pancreatic islets were cultured and dissociated 
into single cells as previously described22. Total dissociated cells were used for 
single-cell capture for each of the donors, except AAb+ donor 1 (HPAP019), which 
was enriched for beta cells.

The C-peptide analysis was performed using a two-site immuno-enzymatic 
assay from Tosoh Bioscience on a Tosoh 2000 auto-analyzer (Tosoh, Biosciences). 
Briefly, the test sample was bound with a monoclonal antibody immobilized on a 

magnetic solid phase and an enzyme-labelled monoclonal antibody, and then the 
sample was incubated with a fluorogenic substrate, 4-methylumbelliferyl phosphate 
(4MUP). The amount of enzyme-labelled monoclonal antibody that binds to the 
beads is directly proportional to the C-peptide concentration in the test sample. 
A standard curve was constructed using calibrator of known concentration, and 
unknown sample concentrations are calculated using the curve. The C-peptide 
assay was calibrated against WHO IS 84/510 standard. The assay had a sensitivity 
level of 0.02 ng ml−1. To monitor the assay performance, a set of low, medium and 
high C-peptide-level quality-control samples were analysed several times per day. 
The inter-assay coefficients of variability for the low, medium and high C-peptide 
controls were 3.2%, 1.6% and 1.8%, respectively. The results of the analyses of the 
long-term monitoring pools demonstrated a consistently low variation around the 
target values, thus ensuring result consistency.

Serum from organ donors was tested for GAD, IA-2, mIAA and ZnT8A 
AAbs by radioligand-binding assay as previously described58. Micro IAA (mIAA) 
and ZnT8A were performed with in-house radiobinding assay59,60 and the assay 
thresholds (index of 0.010 mIAA and 0.020 for ZnT8A) was set up as 99th 
percentile of over 100 controls. Measuring GAD and IA-2 levels was performed 
with NIDDK harmonized standard methods (3) and the upper limits of normal (20 
DK units per ml for GAD and 5 DK units per ml for IA-2) was established around 
the 99th percentile from receiver operating characteristic curves in 500 healthy 
controls and 50 individuals with new-onset diabetes. In the most recent IASP 
Workshop, the sensitivity and specificity were 78% and 99% for GAD, 72% and 
100% for IA-2, 62% and 99% for mIAA and 74% and 100% for ZnT8A, respectively.

scRNA-seq islet capture, sequencing and processing. The Single Cell 3′ Reagent 
Kit v2 or v3 was used for generating scRNA-seq data. A total of 3,000 cells were 
targeted for recovery per donor. All libraries were validated for quality and size 
distribution using a BioAnalyzer 2100 (Agilent) and quantified using Kapa 
(Illumina). For samples prepared using the Single Cell 3′ Reagent Kit v2, the 
following chemistry was performed on an Illumina HiSeq 4000: read 1: 26 cycles; 
i7 index: 8 cycles; i5 index: 0 cycles; and read 2: 98 cycles. For samples prepared 
using the Single Cell 3′ Reagent Kit v3, the following chemistry was performed 
on an Illumina HiSeq 4000: read 1: 28 cycles; i7 index: 8 cycles; i5 index: 0 cycles; 
and read 2: 91 cycles. Cell Ranger (10x Genomics; v3.0.1) was used for bcl2fastq 
conversion, aligning (using the hg38 reference genome), filtering, counting, cell 
calling and aggregating (--normalize = none).

scRNA-seq clustering, doublet removal and cell-type classification. Seurat 
(v3.1.5)32,61 was used for filtering, uniform manifold approximation and projection 
(UMAP) generation and initial clustering. Genes expressed in at least three cells 
were included, as were cells with at least 200 genes. nFeature, nCount, percent.mt, 
nFeature versus nCount and percent.mt versus nCount plots were generated to 
ascertain the lenient filtering criteria of 200 < nFeature < 8,750, percent.mt < 25 and 
nCount < 125,000. Data were then log normalized, and the top 2,000 variable genes 
were detected using the ‘vst’ selection method. Data were then linearly transformed 
(‘scaled’), meaning that for each gene, the mean expression across cells was 0 and 
the variance across cells was 1. Principal-component analysis (PCA) was then 
carried out on the scaled data, using the 2,000 variable genes as input. We used 
two approaches to determine the dimensionality of the data, that is, how many 
principal components (PCs) to choose when clustering: (1) a Jackstraw-inspired 
resampling test that compares the distribution of P values of each PC against a null 
distribution and (2) an elbow plot that displays the standard deviation explained by 
each PC. Based on these two approaches, 17 PCs with a resolution of 1.2 were used 
to cluster the cells, and nonlinear dimensionality reduction (UMAP) was used with 
17 PCs to visualize the dataset.

DoubletFinder (v2.0)62 was used to demarcate potential doublets in the data 
as previously described, with the following details: 17 PCs were used for pK 
identification (no ground-truth) and the following parameters were used when 
running doubletFinder_v3: PCs = 17, pN = 0.25, pK = 0.0725, nExp = nExp_poi, 
reuse.pANN = FALSE and sct = FALSE (Supplementary Fig. 1d). Scrublet (v0.2.1)18 
was also used to demarcate potential doublets. We removed all cells that were 
flagged as doublet by both or either approach.

Fig. 6 | Representative examples of IMC measurement corroborate that MHC class II-positive ductal cells are present in pancreatic tissues. Left, 
IMC in a region of interest (ROI) in pancreatic tissue from three representative individual donors for each donor group type (T1D, AAb+ and control). 
HLA-DR is a general marker of MHC class II (HLA-DR) expression, CD99 is a general islet marker, KRT (pan-keratin) is a ductal cell marker, and CD45 
(PTPRC) is a general immune cell marker. Notably, HLA-DR+ ductal cells were primarily located in large ductal structures (outlined in yellow). The images 
presented here are publicly available at https://www.pancreatlas.org/datasets/508/. Right, HLA typing performed by next-generation sequencing. 
Comprehensive clinical information about each donor is provided in PANC-DB at https://hpap.pmacs.upenn.edu/. Highlighted in yellow are the particular 
HLA alleles contributing to the susceptible or protective genotypes, which are abbreviated for each donor on the left as follows. The four susceptible 
genotypes assessed were: (1) HLA-DRB1*03:01–HLA-DQA1*05:01–HLA-DQB1*02:01 (abbreviated as ‘DR3’, referring to the haplotype bearing the 
DRB1*03 allele); (2) HLA-DRB1*04:01/02/04/05/08–HLA-DQA1*03:01–HLA-DQB1*03:02/04 (or HLA-DQB1*02) (abbreviated as ‘DR4’, referring to 
the haplotype bearing the DRB1*04 allele); (3) HLA-A*24:02; and (4) HLA-B*39:06. The two protective genotypes assessed were: (1) HLA-DRB1*15:01–
HLA-DQB1*06:02 and (2) HLA-DRB1*07:01–HLA-DQB1*03:03 (refs. 45,66,67). Notably, HLA-DR+ ductal cells were found across all HLA genotypes, 
including both susceptible and protective genotypes.
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The raw data for the remaining cells were filtered using the following criteria, 
which resulted in 69,645 cells remaining: 200 < nFeature < 8,750, percent.mt < 25 
and nCount < 100,000. The data were log normalized, the top 2,000 variable genes 
were detected, the data underwent linear transformation, and PCA was carried out, 
as described above. Both the Jackstraw-inspired resampling test and an elbow plot 
of standard deviation explained by each PC were used to determine the optimal 
dimensionality of the data, as described above. Based on these two approaches, 26 
PCs with a resolution of 1.2 was used to cluster the cells, and UMAP was used with 
26 PCs to visualize the 49 clusters detected.

Garnett was used for initial cell classification as previously described8. In brief, 
a cell-type marker file (Supplementary Table 17) with 17 different cell types was 
compiled using various resources, and this marker file was checked for specificity 
using the ‘check_markers’ function in Garnett by checking the ambiguity score and 
the relative number of cells for each cell type. A classifier was then trained using 
the marker file, with ‘num_unknown’ set to 500, and this classifier was then used 
to classify cells and cell-type assignments were extended to nearby cells, that is, 
the ‘clustering-extended type’ (Louvain clustering; Supplementary Fig. 3d). After 
inspection of cluster purity using canonical gene markers of the major pancreatic 
cell types across the Seurat-generated clusters, we found that the abundant and 
transcriptionally distinct cell types form generally distinct and unique clusters: 
beta cells (INS high), alpha cells (GCG high), acinar cells (CPA1 high), ductal 
cells (KRT19 high), endothelial cells (VWF high), stellate cells (RSG10 high) and 
immune cells (PTPRC, also known as CD45 or leucocyte common antigen, high; 
Supplementary Fig. 3e). In contrast across the Seurat-generated clusters, the rarer 
and/or less transcriptionally distinct cell types did not clearly segregate, namely 
delta cells (SST high), PP cells (PPY high) and epsilon cells (GHRL high).

Integration and label transfer was used to further validate Garnett cell-type 
assignments as previously described63. To label canonical cell types, a previous 
snRNA-seq dataset of adult pancreatic cells (EGAS00001004653) was used as a 
reference for the ‘query’ dataset presented in this study. First, SCTransform was 
used to preprocess the data61. Briefly, SCTransform uses a generalized linear 
model for each gene with unique molecular identifier count as the response 
variable and sequencing depth as the predictor. To integrate data for UMAP 
visualization, Seurat integration was used to identify common anchor points 
between datasets. Seurat uses diagonalized canonical correlation analysis followed 
by L2-normalization and searching for mutual nearest neighbours. Then, anchors 
between datasets are compared based on their local neighbourhood structure of 
other anchors to receive ‘correction vectors’. These correction vectors are then 
subtracted from the query gene expression matrix, resulting in an integrated 
dataset63. Similarly for label transfer, these anchors between datasets are instead 
labelled as discrete cell types and similar anchors assign cell labels from the 
reference cells to the query cells63. To assign canonical cell-type labels to hybrid 
cells, the same integration and label transfer process was used but with a previous 
scRNA-seq pancreatic dataset as a reference (GSE145126).

We used the analytical workflow termed TooManyCells9, which implements 
an efficient divisive hierarchical spectral clustering approach along with tree 
visualizations. We invoked the cellular classifier Garnett, which annotates cell 
types by training a regression-based classifier from user-provided cell-type 
signatures. Briefly, for the clustering of all cells, the raw data from the 69,645 
cells were normalized by total count and gene normalization by median count 
(TotalMedNorm) followed by term frequency-inverse document frequency (tf-idf) 
for clustering. For visualization of the comprehensive clustering, the dendrogram 
was first pruned using the TooManyCells flags ‘--min-distance-search 15’ and 
‘--smart-cutoff 15’, followed by pruning using the flag ‘--max-step 6’.

For the clustering of ductal/endocrine cells, data from the ductal/endocrine 
cell clusters from the comprehensive tree were subsetted and normalized by 
TotalMedNorm followed by the term tf-idf. For visualization of the ductal/
endocrine tree, the dendrogram was first pruned using the TooManyCells flags 
‘--min-distance-search 7’ and ‘--smart-cutoff 7’ followed by pruning using the 
flag ‘--max-step 7’. Data from the immune cell cluster from the comprehensive 
tree were subsetted and normalized by TotalMedNorm followed by tf-idf. For 
visualization of the immune tree, the dendrogram was first pruned using the 
TooManyCells flag ‘--max-step 4’. When individual genes were painted across any 
of the dendrograms, ‘TotalMedNorm’ was used to normalize gene expression.

Differential gene expression, gene-set enrichment analysis analysis and 
Metascape analysis. Differential genes were found using edgeR through 
TooManyCells with the normalization ‘NoneNorm’ to invoke edgeR single-cell 
preprocessing, including normalization and filtering. For Metascape analysis64, less 
than or equal to 3,000 differential genes (false discovery rate (FDR) < 0.05 and fold 
change (FC) > 0.1) were subjected to analysis. The top 20 clusters are displayed and 
a stringent cut-off of 1 × 10−6 was applied to determine significant gene ontology 
pathways. For GSEA, GSEA Preranked (4.0.1) was run on a pre-ranked gene list 
using either user-provided pancreatic gene expression sets or standard hallmark 
gene signatures provided by the Molecular Signatures Database. Pseudo-bulk 
analysis was performed by taking the average of cells within individuals. The 
differential genes were found using edgeR through a multi-sample, multi-group 
scRNA-seq analysis tool (muscat)65. The differential genes were filtered based on 
the combined threshold of P value < 0.05 and FC > 1.

Hybrid cell coexpression, differential expression analysis and heat maps. For the 
differentially expressed genes (FDR < 0.05 and FC > 0.1) between every two sample 
groups, we calculated the shared and unique genes in each cell type, and visualized 
the data using Venn diagrams. The expression levels of the genes in each cell of the 
three groups were extracted from the median normalized count matrix. Then, we 
aggregated the expression levels in each group by taking the average value of the 
normalized counts. The mean expression values of the three groups were further 
normalized by the total expression level of that gene. We visualized the normalized 
expression level of differential genes with heat maps.

To examine the coexpression of signature genes of some cell types, we 
normalized the median normalized matrix with log2(N + 1). Then we selected the 
matrix of selected cell types by marker genes. The distribution of the cells from 
selected cell types by expression level of two marker genes were shown with geom_
density_2d_filled() in the ggplot2 package of R.

Cytometry time-of-flight data collection, input files and preprocessing. Flow 
CyTOF was performed as described previously50. Briefly, after isolating the 
dissociated cells, barcoding was conducted for donors following the manufacturer’s 
protocol (Fluidigm, 101-0804 B1). Following barcoding, metal-conjugated 
antibody labelling was carried out in ‘FoxP3 permeabilization buffer’ (eBioscience, 
00-8333) with 1% FBS (Hyclone, 7207) for 12 h at 4 °C at a concentration of up to 3 
million cells per 300 μl of antibody cocktail, followed by washing twice with FoxP3 
permeabilization buffer. Cells were then incubated with the DNA intercalator 
Iridium (Fluidigm, 201192A) at a dilution of 1:4,000 in 2% paraformaldehyde 
(Electron Microscopy Sciences, 15714) in DPBS (Corning, 21-031-CV) at room 
temperature for 1 h. Mass cytometry data were acquired by CyTOF (Fluidigm). 
Flow CyTOF data analyses of endocrine cell composition were performed using 
the Cytobank implement (https://www.cytobank.org/).

Normalized FCS files were pre-processed before TooManyCells analysis and 
visualization using FlowJo (v10.6.1) by gating all events on singlets according  
to event length and DNA content and then on live cells based on cisplatin  
exclusion. The singlet/live gated population was exported to a CSV file for 
TooManyCells analysis. Two-dimensional plots were visualized for combinations of 
individual channels.

TooManyCells clustering for cytometry by time of flight. TooManyCells was 
used to generate cell clades of CyTOF data. Cells with less than a total of 1 × 10−16 
signal were removed, leaving 6,945,575 cells. Following inspection of protein levels 
across a tree with all cells, endocrine and exocrine compartments were further 
subsetted leading to a refined analysis of 4,521,988 cells. Quantile normalization 
of the raw counts was used in the clustering step. The resulting tree was pruned 
by collapsing nodes with less than (7 median absolute deviation (MAD) × median 
number of cells in nodes) cells within them into their parent nodes.

Imaging mass cytometry analysis and cell segmentation. IMC was performed 
as described previously35. Cell segmentation of all images was performed with the 
Vis software package (Visiopharm). All image channels were pre-processed with 
a 3 × 3-pixel median filter, then cells were segmented by applying a polynomial 
local linear parameter-based blob filter to the Iridium-193 DNA channel of each 
image to select objects representing individual nuclei. Identified nuclear objects 
were restricted to those greater than 10 μm2, then dilated up to seven pixels to 
approximate cell boundaries. Per-cell object mean pixel intensities were then 
exported for further analysis.

TooManyCells clustering for imaging mass cytometry. TooManyCells was used 
to generate cell clades of IMC data. Cells with less than a total of 1 × 10−16 signal 
were removed. After inspection of protein levels across a tree with all 1,170,001 
cells, endocrine and exocrine compartments were further subsetted, leading to the 
refined analysis of 130,428 cells. The full tree with 1,170,001 cells was used for the 
assessment of HLA-DR-expressing ductal cells. Quantile normalization of the raw 
counts was used in the clustering step. The resulting tree was pruned by collapsing 
nodes containing less than (5 MAD × median number of cells in nodes) cells within 
them into their parent nodes. Subsetting of the tree was performed with ‘--root-cut 
3’ to focus on node 3 in relevant analyses, with additional pruning of  
(3 MAD × median number of cells in nodes).

Cell-neighbourhood analysis for imaging mass cytometry. Three labels were 
given to cells in the IMC neighbourhood analysis: base, neighbour and distant. 
Base cells originated from the chosen node; here, node 16 in the node-3-focused 
IMC tree, or node 10 in the complete pruned tree, which includes the former node 
16. Given the x and y coordinates from IMC per cell, each cell’s Euclidean distance 
to a base cell was calculated. If that distance was less than or equal to the chosen 
value, that is, 20 for the complete pruned tree, the cell was assigned the neighbour 
label. Otherwise, the cell was designated as distant.

Machine-learning method for cell annotation in imaging mass cytometry and 
cytometry by time of flight. To automatically label single cells from proteomic 
profiles, raw proteomic data along with a signature/marker file (listing unique 
marker proteins for each cell type) were taken as input. The raw data were 
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normalized with an arcsinh transformation and a cofactor of 200 in the case of 
CyTOF, while log transformation followed by unit normalization in the case of 
IMC data. The data were then randomly split into two halves (half donors in one 
set); cells from 50% of donors were in the training set, while the remaining were 
in the test set. The splitting was done in a stratified fashion based on the disease 
condition (T1D, AAb+ and control). Semi-supervised learning was used on the 
training set (clustering based on proteomics similar cells together) to generate cell 
labels for the first half of cells based on seeds (cluster centroids) calculated using 
a handful of labelled cells (0.1–10 percentile cells for each cell type) annotated 
using markers in the signature file. The annotated training set was used to train an 
extreme learning machine (a fast classifier built on a feed-forward neural network 
that does not need training for learning).

Immunofluorescence and confocal microscopy. Tissues were fixed in 10% 
buffered formalin overnight, washed several times in PBS, then dehydrated using 
ethanol and xylene, then embedded in paraffin and sectioned to 4–8 µm. Following 
deparaffinization through xylene and sequential rehydration, slides were subjected 
to heat antigen retrieval in a pressure cooker with Bulls Eye Decloaking buffer 
(Biocare). Slides were incubated in primary antibody overnight and secondary 
antibody conjugated to peroxidase and then developed using tyramide signal 
amplification (Akoya Biosciences). Slides were counterstained with DAPI, and then 
mounted and imaged on a Zeiss LSM800. Primary antibodies used for staining 
were mouse anti-CK19 (Santa Cruz, sc-6278) and Rabbit anti-HLA-DR  
(Abcam, ab92511).

Statistical analysis of boxplots with control, AAb+ and T1D donor states. The 
D’Agostino–Pearson omnibus normality test was used to assess whether the data 
from each group were normally distributed. If any group failed the D’Agostino–
Pearson omnibus normality test, the Kruskal–Wallis test was applied. If none of the 
groups failed the D’Agostino–Pearson omnibus normality test, a one-way ANOVA 
was applied.

Statistical analysis of cellular neighbourhoods. Differential marker expression 
significance for neighbours in the IMC analysis was determined using permutation 
tests. For each marker, the distribution of the observed marker value for each of 
the designated n neighbours was compared against 100 distributions derived from 
n random cells across the entire IMC tree. The resulting P value was calculated 
by the ratio of the number of permutations that had a lower median marker value 
than the observed marker value to the total number of permutations. If this value 
was <0.5, the value was subtracted from 1 to switch directionality (number of 
permutations with a higher median value). To account for the two-tailed test, this 
value was multiplied by 2 for the final P-value calculation.

Statistical analysis of gene signatures in GAD+ donors. Pseudo-bulk counts of 
GAD+ donors across all cell types were identified using the muscat tool65. The 
GAD levels for each GAD+ donor were retrieved from Supplementary Table 1. To 
identify the correlation between gene signatures and GAD levels, the Spearman 
correlation test was conducted in each cell type. The threshold of correlation > 0.9 
and P value < 0.05 were used to determine the significantly correlated genes with 
GAD levels.

Assessment of common genetic variants associated with type 1 diabetes. The 
CELLEX tool takes the scRNA-seq gene expression matrix as input and evaluates 
multiple metrics such as differential expression t-statistics, gene enrichment score, 
expression proportion and normalized specificity index26. The average of these 
metrics is measured as expression specificity. The GWAS trait data and CELLEX 
estimates are given as input to CELLECT. CELLECT uses the genetic prioritization 
model (with a threshold of S-LDSC < 0.05) to quantify the association between the 
common phylogenetic GWAS signal and cell-type expression specificity26.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The Gene Expression Omnibus accession number associated with this paper is 
GSE148073. Additional data are publicly available at https://hpap.pmacs.upenn.
edu/. Furthermore, a user-friendly web portal for exploration of the scRNA-seq 
data is available at https://cellxgene.cziscience.com/e/37b21763-7f0f-41ae-9001-
60bad6e2841d.cxg/.

Code availability
Where applicable, scripts used for data processing and analysis are available  
in the Supplemental Information and Methods and provided on GitHub at  
https://github.com/GregorySchwartz/multiomics-single-cell-t1d/. TooManyCells 
is a publicly available suite of tools, algorithms and visualizations (https://github.
com/GregorySchwartz/too-many-cells/) that was extensively used in this study, and 
where applicable, the flags used in TooManyCells to generate specific figures are 
included in the Methods.
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Extended Data Fig. 1 | Cell numbers and clustering before complete filtering. a) Pie chart displaying the cell numbers and proportions of each individual 
donor per donor type. b) Box plot displaying the average gene number per cell per donor type. c) UMAP visualization of cell clusters for all cells. d) 
Doublets and singlets, as identified using DoubletFinder, across cell clusters visualized by UMAP. e) UMAP visualization of the normalized gene expression 
counts of each canonical gene marker of each major cell type.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Doublet removal and UMI counts. a) Doublets and singlets, as identified using Scrublet, across cell clusters visualized by UMAP 
per individual. b) Venn diagram indicating the number of cells deemed doublets by DoubletFinder and Scrublet, as well as cells that were commonly 
identified by both approaches. c) Table indicating the number of cells removed and the resulting total cell number for each step of filtering. d) Unique 
molecular identifier (UMI) counts per cell projected across the dendrogram visualization and clustering of all cells from Fig. 1c. Pie charts at the end of 
the branches display the breakdown of UMI counts per cell within that terminal cluster. Cells begin at the start pin symbol, and from there are partitioned 
based on similarities and differences in gene expression. e) UMI counts per cell projected across the dendrogram visualization and clustering of ductal 
and endocrine cells from Fig. 1d. Pie charts at the end of the branches display the breakdown of UMI counts per cell within that terminal cluster. Cells 
begin at the start pin symbol, and from there are partitioned based on similarities and differences in gene expression. f) Expression of genes associated 
with mitochondrial function projected across the dendrogram visualization and clustering of all cells from Fig. 1c. g) Expression of genes associated with 
mitochondrial function projected across the dendrogram visualization and clustering of ductal and endocrine cells from Fig. 1d.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell numbers and clustering after complete filtering. a) Pie chart displaying the cell numbers/proportions of each individual donor 
per donor type. b) UMAP visualization of cell clusters for all cells. c) UMAP visualization donor groups across clusters for all cells. d) UMAP visualization 
of Garnett cellular classifications across clusters for all cells. e) UMAP visualization of the normalized gene expression counts of each canonical gene 
marker of each major cell type.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Marker gene expression confirms canonical cell types. a) Dendrograms highlighting the expression of each canonical gene marker 
of each major cell type across the dendrogram of all cells in Fig. 1c. b) The classification of our scRNA-seq data was confirmed by a label transfer strategy 
using a previous single-nucleus RNA-seq data set in pancreatic islets10. c) Bar plot demonstrates percentages of agreement between previous annotation 
and our strategy using a label-transfer strategy. d) Dendrograms highlighting the expression of each canonical gene marker of each major cell type across 
the dendrogram of ductal and endocrine cells in Fig. 1d. e) To further validate the most closely related cell types to Hybrid cells, we used a label transfer 
strategy to a previous pancreatic islet scRNA-seq data set19. In concordance with Garnett and canonical gene markers, we corroborated the assignment 
of beta, alpha, and PP cells to these Hybrid cells. f) Bar plot demonstrates annotation results of label transfer for cells grouped as Hybrid cells. g) Pie chart 
displaying the cell numbers/proportions of each cell type defined in Fig. 1, c and d. h) Schematic of the human pancreatic islet anatomy and major  
cell types.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Gene and gene ontology pathways that are shared and different across disease states in Epsilon-1, Epsilon-2, and Immune cells. 
(a-c) (Left) For each cell type, Venn diagrams indicate the numbers of upregulated and downregulated genes, as well as overlapping genes, across the two 
disease states. Circles indicate the numbers of genes that are ‘T1D enriched’ or ‘AAb enriched’. p-values presented are the results of hypergeometric CDF 
tests (one-tailed test for overrepresentation). (Middle) For each cell type, displayed are gene ontology pathways that are shared across T1D and AAb+ 
cells when compared to Control cells (top) or pathways that are differently enriched in T1D cells vs AAb+ cells (bottom). The top 20 clusters are displayed 
and a stringent cut-off of 1e-6 was applied to determine significant gene ontology pathways. (Right) Heatmaps displaying the degree of gene expression 
changes of genes (rows) that are shared (top) or differential (bottom) across AAb+ and T1D disease states. (d) GSEA analysis plots of FDR q-value 
vs Normalized Enrichment Score. For both ductal populations, Ductal-1 and Ductal-2, T1D cells were compared to AAb+ or Control cells to determine 
differentially enriched gene sets. Demarcated in red and labeled are signatures of interest.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Corroboration of HLA-DR+ Ductal cells. (a-b) Dendrograms highlighting the expression of the MHC class II complex (a) or MHC 
class II activity (b) across the dendrogram of all cells in Fig. 1C. Scale bars represent normalized transcript numbers (mean across all MHC class II complex 
genes (a) or MHC class II activity genes (b)). (c-d) Dendrograms highlighting the expression of the MHC class II complex (c) or MHC class II activity (d) 
across the dendrogram of ductal and endocrine cells in Fig. 1D. Scale bars represent normalized transcript numbers (mean across all MHC class II complex 
genes (c) or MHC class II activity genes (d)). (e-f) Dendrograms highlighting the expression of the HLA-DPB1 (E) or KRT19 (f) across the dendrogram of 
ductal and endocrine cells in Fig. 1D. Scale bars represent normalized transcript numbers. (g) Dendrograms highlighting the expression of the immune-
related genes across the dendrogram of ductal and endocrine cells in Fig. 1D. Scale bars represent normalized transcript numbers. (h) Dendrograms 
highlighting the expression of the BMPR1A across the dendrogram of ductal and endocrine cells in Fig. 1D. Scale bars represent normalized  
transcript numbers.
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Extended Data Fig. 7 | GSEA analysis across annotated cells types for dendritic cells gene sets. a) DC1 gene signature is significantly enriched within 
Ductal-2 cells of T1D donors. Integrated GSEA analysis for dendritic cells gene sets from Villani et al47 across ranked lists of differentially expressed genes 
between T1D and control donors. b) Expression analysis of the inhibitory marker VSIR in dendritic cells demonstrates the high level of this gene in T1D 
ductal cells compared with control ductal cells.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | CyTOF validation of canonical cell types. a) Bar graph displaying the proportion of cells for all major pancreatic cell types from 
each donor group where cell annotations were obtained by our new machine-learning based strategy using CyTOF measurements across 12 donors. 
b) Dendrogram visualization of the immune cell cluster, CD45 positive (+) cells, as determined by the analysis of the flow cytometry by time-of-flight 
(CyTOF) data. c) Dendrogram visualization of the beta cell cluster, C-peptide positive (+) cells, as determined by the analysis of the CyTOF data. d) 
Dendrogram visualization of the alpha cell cluster, Glucagon positive (+) cells, as determined by the analysis of the CyTOF data. e) Major cell types 
projected on TooManyCells tree based on our machine-learning based annotation using CyTOF data (n=6,945,575 cells). f) Two-parameter CyTOF 
analysis of HLA-DR and cytokeratin protein expression in single cells from T1D donor #3 (HPAP023). g) Two parameter CyTOF analysis of HLA-DR 
and cytokeratin protein expression in single cells from Control donor #3 (HPAP034), a donor with a very low percentage of HLA-DR+ ductal cells as 
determined by unbiased analysis of CyTOF data with TooManyCells.
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Extended Data Fig. 9 | IMC validation of HLA-DR+ ductal cells. a) Bar graph displaying the proportion of cells for all major pancreatic cell types from 
each donor group where cell annotations were obtained by our machine-learning-based strategy using IMC measurements. Further manual inspection 
of CD19 and FOXP3 staining used for annotating B and Tregs indicated low quality of these markers across tissue slides. b) Dendrogram visualization 
of the immune cell cluster, CD45 positive (+) cells, as determined by the analysis of the imaging mass cytometry (IMC) data analysis. c) Dendrogram 
visualization of the beta cell cluster, C-peptide positive (+) cells, as determined by the analysis of the IMC data analysis. d) Dendrogram visualization of 
the alpha cell cluster, Glucagon positive (+) cells, as determined by the analysis of the IMC data analysis. e) Major cell types projected on TooManyCells 
tree as they were annotated by our machine-learning based strategy using IMC data (n=1,170,001 cells).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Cellular neighborhood analysis in IMC data demonstrates the enrichment of CD4+ T cells surrounding HLA-DR+ ductal cells. 
a) Bar plot displaying the proportion of HLA-DR+ cytokeratin+ cells from each pancreatic region determined by IMC. b-c) HLA-DR+ cytokeratin+ cells 
versus percentage of myeloid cells. For each donor group, the median of percentage of each annotated immune subtype and the median HLA-DR+ ductal 
cell percentage of total cells across all individual donors per donor group was computed. Only myeloid cells demonstrated significant correlation with 
respect to the number of HLA-DR+ cytokeratin+ cells across donor groups. d) Dendrogram visualization of the clusters of HLA-DR+ cytokeratin+ cells 
(red), cells neighboring HLA-DR+ cytokeratin+ (blue), and cells distant from HLA-DR+ cytokeratin+ cells (grey) as determined by leveraging the spatial 
architecture provided by IMC data. e) Boxplots showing the normalized protein expression of different canonical markers in cells neighboring HLA-DR+ 
cytokeratin+ cells (blue) versus cells neighboring random cells (grey). The number of random cells evaluated was equal to the number of HLA-DR+ 
cytokeratin+ cells. Differential marker expression significance for neighbors in the IMC analysis was determined using permutation tests. For each marker, 
the distribution of that marker value for each of the designated n neighbors was compared against 100 distributions derived from n random cells across 
the entire IMC tree. * indicates p-value < 0.01. Total number of cells in both blue and gray groups is 195,633. Box-and-whisker plots (centre, median; 
box limits, upper (75th) and lower (25th) percentiles; whiskers, 1.5 × interquartile range; points, outliers). f) CD4+ T cells are the number one immune 
subtypes enriched at the neighborhood of HLA-DR+ cytokeratin+ cells. Annotation of neighbors of HLA-DR+ cytokeratin+ cells was performed our 
machine-learning based strategy.
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Data collection scRNA-seq 
For samples prepared using �The Single Cell 3� Reagent Kit v2�, the following chemistry was performed on an Illumina HiSeq4000: Read 1: 26 
cycles, i7 Index: 8 cycles, i5 index: 0 cycles, and Read 2: 98 cycles. For samples prepared using �The Single Cell 3� Reagent Kit v3�, the following 
chemistry was performed on an Illumina HiSeq 4000: Read 1: 28 cycles, i7 Index: 8 cycles, i5 index: 0 cycles, and Read 2: 91 cycles. Cell Ranger 
(10x Genomics; v3.0.1) was used for bcl2fastq conversion, aligning (using the hg38 reference genome), filtering, 
counting, cell calling, and aggregating (--normalize=none) (fig. S1, a and b).  

CyTOF 
Mass cytometry data were acquired on CyTOF (Fluidigm). 

IMC 
From Wang et al. 2016:  
"Antibody Labeling and Image Acquisition 
Four to eight mm FFPE sections were stained with an antibody cocktail (Table S1) containing all antibodies. Briefly, tissue sections 
were de-paraffinized with xylene and carried through sequential rehydration from 100% Ethanol to 70% Ethanol before being transferred 
to PBS. Heat-induced antigen retrieval was performed in a decloaking chamber (Biocare Medical) at 95oC for 30 min in Tris/ 
EDTA buffer (10mM Tris, 1mM EDTA, pH9.2). Slides were cooled to room temperature (RT) and were subsequently blocked with 
PBS+3%BSA for 1h at RT. Meanwhile, the antibody cocktail was prepared in PBS+1%BSA buffer, with the appropriate dilution 
for each of the antibodies (Table S1). Each slide was incubated with 100 ml of the antibody cocktail overnight at 4oC. The next 
day, slides were washed 3 times with PBS and labeled with 1:400 dilution of Intercalator-Ir (Fluidigm 201192B) in PBS for 30 min 
at RT. Slides were briefly washed with H2O three times and air dried for at least 30 min before IMC acquisition. The IMC was 
purchased from Fluidigm (Fluidigm, Hyperion Imaging System). All IMC operation was performed following Fluidigm�s operation" 



Data analysis

IHC 
Slides were imaged on Zeiss LSM800

scRNA-seq clustering, doublet removal, & cell type classification 
Seurat v3.1.5 (19, 50) was used for filtering, UMAP generation, and initial clustering. Genes expressed in at least 3 cells were kept, as were 
cells with at least 200 genes. nFeature, nCount, percent.mt, nFeature vs nCount, and percent.mt vs nCount plots were generated to ascertain 
the lenient filtering criteria of 200 > nFeature < 8,750, percent.mt < 25, and nCount <125,000. Data was then log normalized, and the top 
2,000 variable genes were detected using the �vst� selection method. The data was then linearly transformed (�scaled�), meaning that for 
each gene, the mean expression across cells is 0 and the variance across cells is 1. Principle component analysis (PCA) was then carried out on 
the scaled data, using the 2,000 variable genes as input. We employed two approaches to determine the dimensionality of the data, i.e. how 
many principal components to choose when clustering: (1) a Jackstraw-inspired resampling test that compares the distribution of p-values of 
each principle component (PC) against a null distribution and (2) an elbow plot that displays the standard deviation explained by each 
principal component. Based on these two approaches, 17 PCs with a resolution of 1.2 were used to cluster the cells, and non-linear 
dimensionality reduction (UMAP) was used with 17 PCs to visualize the dataset (fig. S1, c and e).  
Two independent methods were used to detect and remove doublets. DoubletFinder v2.0 (51) was used to demarcate potential doublets in 
the data as previously described, with the following details: 17 PCs were used for pK identification (no ground-truth) and the following 
parameters were used when running doubletFinder_v3: PCs = 17, pN = 0.25, pK = 0.0725, nExp = nExp_poi, reuse.pANN = FALSE,  and sct = 
FALSE (fig. S1d). Scrublet v0.2.1 (18) was also used to demarcate potential doublets (fig. S2a). Given that a small percentage of cells were 
demarcated as doublets by both methods, we removed all cells that were flagged as doublet by both or either approach, leading to the 
removal of 3,770 cells (fig. S2, b and c).  
Following doublet removal, the raw data for the remaining 73,235 cells were filtered using the following criteria, which resulted in 69,645 cells 
remaining: 200 > nFeature < 8,750, percent.mt < 25, and nCount <100,000 (fig. S2c and fig. S3a). The data were log normalized, the top 2,000 
variable genes were detected, the data underwent linear transformation, and PCA was carried out, as described above. Both the Jackstraw-
inspired resampling test and an elbow plot of standard deviation explained by each principal component were used to determine the optimal 
dimensionality of the data, as described above. Based on these two approaches, 26 PCs with a resolution of 1.2 was used to cluster the cells, 
and UMAP was used with 26 PCs to visualize the 49 clusters detected (fig.S3, b and c).  
Garnett was used for initial cell classification as previously described (9). In brief, a cell type marker file (table S53) with 17 different cell types 
was compiled using various resources (18-22, 28), and this marker file was checked for specificity using the �check_markers� function in 
Garnett by checking the ambiguity score and the relative number of cells for each cell type. A classifier was then trained using the marker file, 
with �num_unknown� set to 500, and this classifier was then used to classify cells and cell type assignments were extended to nearby cells, 
�clustering-extended type� (Louvain clustering) (fig. S3d). Upon inspection of cluster purity using canonical gene markers of the major 
pancreatic cell types, we found that the abundant and transcriptionally distinct cell types form generally distinct and unique clusters: beta 
cells (INS high), alpha cells (GCG high), acinar cells (CPA1 high), ductal cells (KRT19 high), endothelial cells (VWF high) stellate cells (RSG10 
high), and immune cells (PTPRC, also known as CD45 or leukocyte common antigen, high) (fig. S3e). In contrast, the rarer and/or less 
transcriptionally distinct cell types did not clearly segregate, namely delta cells (SST high), PP cells (PPY high), and epsilon cells (GHRL high) (fig. 
S3e).  
To overcome the apparent limitation in grouping the major canonical cell types, we employed the analytical workflow termed 
�TooManyCells� (10), which implements an efficient divisive hierarchical spectral clustering approach along with tree visualizations to preserve 
the relationships among cell clusters at varying resolutions. In conjunction with �TooManyCells� clustering, we invoked the cellular classifier 
Garnett (9), which annotates cell types by training a regression-based classifier from user-provided cell type signatures (table S53; (34)). 
Briefly, for the clustering of all cells, the raw data from the 69,645 cells were normalized by total count and gene normalization by median 
count (TotalMedNorm) followed by term frequency-inverse document frequency (tf-idf) for clustering. For visualization of the comprehensive 
clustering, the dendrogram was first pruned using the TooManyCells flags �--min-distance-search �15�� and �--smart-cutoff �15��, followed by 
pruning using the flag �--max-step 6�. TooManyCells enabled distinct clustering of all major known cell types associated with pancreatic islets, 
as confirmed by Garnett cell labels and the inspection of canonical gene markers for each cell type (Fig. 1C and fig. S4a).   
The raw data from different cell types were then subsetted from the comprehensive clustering in Figure 1C in order to cluster cells on a cell-
type basis. For the clustering of ductal/endocrine cells, data from the ductal/endocrine cell clusters from the comprehensive tree were 
subsetted and normalized by TotalMedNorm followed by term tf-idf. For visualization of the ductal/endocrine tree, the dendrogram was first 
pruned using the TooManyCells flags �--min-distance-search �7�� and �--smart-cutoff �7�� followed by pruning using the flag �--max-step 7�. For 
the clustering of immune cells, data from the immune cell cluster from the comprehensive tree were subsetted and normalized by 
TotalMedNorm followed by tf-idf. For visualization of the immune tree, the dendrogram was first pruned using the TooManyCells flag �--max-
step 4�. When individual genes were painted across any of the dendrograms, �TotalMedNorm� was employed to normalize gene expression.   

Differential Gene Expression, GSEA analysis, and Metascape analysis 
 Differential genes were found using edgeR through TooManyCells with the �normalization �NoneNorm� to invoke edgeR single cell 
preprocessing, including normalization and filtering. For Metascape analysis (http://metascape.org/gp/index.html#/main/step1; (52)), less 
than or equal to 3,000 differential genes (FDR< 0.05 and fold change (FC) > 0.1) were subjected to analysis. The top 20 clusters are displayed 
and a stringent cut-off of 1e-6 was applied to determine significant gene ontology pathways. For gene-set-enrichment-analysis (GSEA) 
analysis, GSEA Preranked (4.0.1) (53) was run on a pre-ranked gene list using either user-provided pancreatic gene expression sets (22, 28) or 
standard hallmark gene signatures provided by the Molecular Signatures Database (MSigDB) (54).   

CyTOF 
Flow CyTOF data analyses of endocrine cell composition was performed using the Cytobank implement (https://www.cytobank.org/).  
Normalized FCS files were pre-processed prior to TooManyCells analysis and visualization using FlowJo Version 10.6.1 by gating all events on 
singlets according to event length and DNA content and then on live cells based on cisplatin exclusion. The Singlet/Live gated population was 
exported to a CSV file for TooManyCells analysis. Two dimensional plots were visualized for combinations of individual channels. 
TooManyCells was used to generate cell clades of CyTOF data. Cells with less than a total of 1e-16 signal were removed, leaving 6,945,575 
cells. Upon inspection of protein levels across a tree with all cells (fig S15 a to c), endocrine and exocrine compartments were further 
subsetted leading to a refined analysis of 4,521,988 cells (Fig. 4A). Quantile normalization of the raw counts was used in the clustering step. 
The resulting tree was pruned by collapsing nodes with less than (7 MAD X median # cells in nodes) cells within them into their parent nodes.  

IMC 
Cell segmentation of all images was performed with the Vis software package (Visiopharm). All image channels were pre-processed with a 3x3 
pixel median filter, then cells were segmented by applying a polynomial local linear parameter-based blob filter to the Iridium-193 DNA 
channel of each image to select objects representing individual nuclei. Identified nuclear objects were restricted to those greater than 10 m2, 
then dilated up to 7 pixels to approximate cell boundaries. Per-cell object mean pixel intensities were then exported for further analysis.  



TooManyCells was used to generate cell clades of IMC data. Cells with less than a total of 1e-16 signal were removed. Upon inspection of 
protein levels across a tree with all 1,170,001 cells, endocrine and exocrine compartments were further subsetted, leading to the refined 
analysis of 130,428 cells. The full tree with 1,170,001 cells was used for the assessment of HLA-DR-expressing ductal cells (Fig 6F). Quantile 
normalization of the raw counts was used in the clustering step. The resulting tree was pruned by collapsing nodes with less than (5 MAD X 
median # cells in nodes) cells within them into their parent nodes. Subsetting of the tree was done with �--root-cut 3� to focus on node 3 in 
relevant analyses, with additional pruning of (3 MAD X median # cells in nodes). Three labels were given to cells in the IMC neighborhood 
analysis: base, neighbor, and distant. Base cells originated from the chosen node, here node 16 in the node 3-focused IMC tree, or node 10 in 
the complete pruned tree which includes the former node 16. Given the x- and y-coordinates from IMC per cell, each cell�s Euclidean distance 
to a base cell was calculated. If that distance was less than or equal to the chosen value, here 20 for the complete pruned tree, the cell was 
assigned the neighbor label. Otherwise the cell was designated as distant. 
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Sample size

Data exclusions

 All high quality scRNA-seq libraries collected to date by HPAP were used in this study, which is comprised of 24 human organ donors 
representing three categories: individuals with T1D (n = 5), those with AAbs toward pancreatic islet proteins but no clinical diagnosis of 
T1D (�AAC+�; n = 8), and those with neither AAbs nor a history of T1D (�Control�; n = 11).

Since all high quality scRNA-seq libraries collected to date by HPAP were used in this study, no samples were excluded. 

Replication

Randomization

Blinding

These are human donor samples on a hard to harvest (and in some instances rare) population of cells, and therefore, replication is not 
plausible.

Randomization was not carried out. The contribution of covariates on our findings was assessed (please see figure S5 and S6). Covariates were 
NOT found to affect cell clustering, and therefore, not affect our findings: autoantibody type, age, amylase levels, BMI, cold ischemic time, 
collection period, c-peptide levels, culture days, CyTOF purity, DCD or DBD, group (T1D, AAC+, or control), HbA1c%, individual, lipase levels, 
ancestry, sex, viability, or warm ischemic time. 

Blinding was not carried out because the major approach used in this study, RNA-seq, is generally considered to be unbiased
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Mouse anti-CK19 (Santa Cruz sc-6278), Rabbit anti-HLA-DR (Abcam ab92511)

Validation Adapted from the IMC paper in which this approach was described, Y. J. Wang et al., Multiplexed In Situ Imaging Mass Cytometry 
Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. Cell Metab 29, 769-783 e764 (2019): "20 of the 
33 antibodies used in the current panel were directly purchased from FluidigmR (https://www.fluidigm.com). For the remaining 13 
antibodies, carrier-free antibodies were purchased from different vendors and tested by immunofluorescent staining on FFPE 
sections. Based on anticipated epitope abundance, either pancreas or spleen sections were used for antibody testing. The staining 
results of antibodies were assessed by board-certified pathologists. Antibodies producing the expected results were conjugated with 
lanthanide metals using the Maxpar X8 metal conjugation kit following manufacturer�s protocol (Fluidigm 201300). Post-conjugation, 
antibody specificities were again tested using immunofluorescent staining, followed by titration in the IMC platform. The antibody 
characterization procedure and results are shown in Figures S1A and S1B and Table S1. More details on antibody quality assessment 
can be found in Tables S2 and S3."  

Adapted from the IMC paper in which this approach was described, Y.J. Wang et al. Single-Cell Mass Cytometry Analysis of the 
Human Endocrine Pancreas. Cell Metab. 24(4):616-626 (2016): "Antibodies were validated by the following three methods. (1) 
Immunofluorescent labeling (Figures S1A�S1E): the labeling efficiency of each antibody was tested by direct labeling of human islet 
cells in suspension. Briefly, human pancreatic cells were dissociated and labeled with the test antibodies following the same 
procedure as when performing mass cytometry. Subsequently, Cy3-conjugated secondary antibodies were applied. Cells were 
cytospun onto microscope slides and imaged under a fluorescent scope. Only those antibodies displaying the expected staining 
patterns were used in downstream experiments. (2) Flow cytometry (Figure S1F): cells were dissociated and labeled as in mass 
cytometry experiment, followed by secondary antibody staining in the Cy3 channel. Cellular events were subsequently acquired by a 
BD LSRII following a standard flow cytometry protocol. (3) Stimulation followed by CyTOF2 sample acquisition (Figure S1G): human 
islets were (a) incubated in retinoic acid at 50 nM final concentration for 72 hr; (b) serum starved overnight, followed by stimulation 
with 1.25 ng/ml Leptin for 4 hr; or (c) serum starved for 48 hr, followed by stimulation with Prolactin at 200 ng/ml for 30 min. After 
stimulation, cells were dissociated and processed following a normal mass cytometry sample preparation protocol. Antibodies that 
passed initial quality control were titrated in CyTOF with 1:100, 1:200, 1:500, 1:1,000, and 1:10,000 dilutions. Unlabeled cells were 
used as a negative control

"

Human research participants
Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

All donors were screened for autoantibodies prior to organ harvest, and AAb positivity was confirmed again post tissue 
processing and islet isolation. The contribution of covariates on our findings was assessed (please see figure S5 and S6). 
Covariates were NOT found to affect cell clustering, and therefore, not affect our findings: autoantibody type, age, amylase 
levels, BMI, cold ischemic time, collection period, c-peptide levels, culture days, CyTOF purity, DCD or DBD, group (T1D, AAC
+, or control), HbA1c%, individual, lipase levels, ancestry, sex, viability, or warm ischemic time

Pancreatic islets were procured by the HPAP consortium (RRID:SCR_016202; https://hpap.pmacs.upenn.edu), part of the 
Human Islet Research Network (https://hirnetwork.org/), with approval from the University of Florida Institutional Review 
Board (IRB # 201600029) and the United Network for Organ Sharing (UNOS). A legal representative for each donor provided 
informed consent prior to organ retrieval. For T1D diagnosis, medical charts were reviewed and C-peptide levels were 
measured in accordance with the American Diabetes Association guidelines (American Diabetes Association 2009). All donors 
were screened for autoantibodies prior to organ harvest, and AAb positivity was confirmed again post tissue processing and 
islet isolation.

Pancreatic islets were procured by the HPAP consortium under the Human Islet Research Network (https://hirnetwork.org/) 
with approval from the University of Florida Institutional Review Board (IRB # 201600029) and the United Network for Organ 
Sharing (UNOS).

Note that full information on the approval of the study protocol must also be provided in the manuscript.


