BBCB5080- Principles of Macromolecular Biophysics. 2025 Schedule

Director: Kim Sharp, sharpk@upenn.edu

Co-director: Sergei Vinogradov, <u>vinograd.upenn@gmail.com</u>
Time: Wed, Thurs, **1.45-3.15pm**, 255 Anatomy-Chemistry Building

This is an introductory course on Macromolecular Biophysics. The first part of the course covers the physical fundamentals underlying the structure and behavior of macromolecules necessary for biological function. The second part of the course covers the principle biophysical methods used to study macromolecules. The third part of the course examines, through a case study approach, how novel, yet still **rigorous and reproducible** research is conducted. For each case 2 students will present a small set of papers (usually 2 to 3) representing different sides of a scientifically controversial, possibly unsolved, topic in macromolecular biophysics. Students can choose from a set of pre-selected topics, or from their own suggestions (with approval from the director). The presentations will emphasize the dynamic, often uncertain dialogue of experiment, interpretation and critique involved in rigorous and reproducible scientific discovery. The presentation will be 'contemporaneously historical', i.e. based on the state of knowledge at the time of the papers. It can use knowledge of earlier literature, but not of research that was unknown at the time. Cases typically draw from papers and letters in general journals like Science or Nature. They thus are written to be understood by people outside the specific area of the articles and without extensive background literature reading, (like BBCB5080 students!)

There is no textbook that covers all of the class, as much of the material is based on current research and is too new for textbooks. However Van Holde, K. E. et al. *Principles of Physical Biochemistry*, 2nd Edition, covers much of the material. A copy to view is available from KAS.

Lecture notes and other class material, include topics/papers for the case studies will be posted on canvas as the course progresses

Grade: Homework Assignments: 40%, Exam 30%, Case Study presentations/Participation 30%.

Date	Topic	Lecturer
	Part 1: The Physics of Macromolecules	
W sep 3	Molecular Interactions: Bonding, Nonpolar, Polar, Electrostatics	Sharp
R sep 4	Equilibria: Folding, Structure and Stability	Sharp
W sep 10	Equilibria: Binding and Allostery	Sharp
R sep 11	Kinetics: Theory	Sharp
W sep 17	Kinetics: Experimental	Kohli
R sep18	Kinetics: Enzymes, Inhibitors and more	Parker
	Part 2: Biophysical methods for studying macromolecules	
W sep 24	Optical Spectroscopy (UV, Fluorescence, CD)	El Khatib
R sep 25	Optical Spectroscopy (UV, Fluorescence, CD)	El Khatib
W oct 1	Scattering: Determination of structure	Gupta
R oct 2	Diffraction 1: Determination of Structure	van Duyne
W oct 8	Fall Break no class	
R oct 9	Fall break no class	
W oct 15	Diffraction 2: Determination of Structure	van Duyne
R oct 16	Cryo Electron Microscopy: Tomography	Chang
W oct 22	Cryo Electron Microscopy: Principles of EM imaging	Murakami
R oct 23	Cryo Electron Microscopy: Single Particle	Murakami
W oct 29	Hydrogen Exchange	Black
R oct 30	Super Resolution Microscopy	Hugelier
W nov 5	Single Molecule Biophysics	Hugelier
R nov 6		
W nov 12	NMR	Sgourakis
	Part 3: Rigor and Reproducibility in Biophysical Research: Examination of Current Scientific Controversies	
R nov 13	NMR	Sgourakis
W nov 19	Case Study Presentations. See list of topics in separate document handed out at first class	Pair 1, 2
R nov 20	Case Study Presentations	Pair 3,4
W nov 26	Thanksgiving- no class	Thanksgiving- no class
R nov 27	Thanksgiving- no class	Thanksgiving- no class
W dec 3	Case Study Presentations	Pair 5,6
R dec 4	Departmental Retrreat no class	
W dec 10	Case Study Presentations	Pair 7,8
R dec 11	Case Study Presentations	Pair 9, 10 (if necessary)
W dec 17	Final Exam Due	